共查询到20条相似文献,搜索用时 132 毫秒
1.
针对室内环境复杂,难以通过单一传感器对机器人精准定位的问题,以室内环境中的两轮差动移动机器人为研究对象,提出了一种自适应无迹卡尔曼室内定位算法。该方法以无迹卡尔曼滤波(UKF)算法为基础,融合里程计、超声波定位系统、电子罗盘等传感器数据,利用超声波定位低频特性好的特点,弥补里程计结合电子罗盘进行航迹推算的累积误差和打滑影响。鉴于实际中量测噪声往往难以确定,利用Sage-Husa自适应方法,并根据不同传感器的噪声特性设置不同的加权系数,在线更新量测噪声特性,以实现对量测噪声的自适应。通过仿真验证,该方法能在传感器噪声特性未知的情况下,有效适应传感器噪声的变化,从而能够在复杂室内环境下,实现较高精度和鲁棒性的位姿估计。 相似文献
2.
3.
针对视觉目标位姿估计系统中常出现的因为特征点遮挡而造成系统估计结果不准确的问题,本文提出了一种利用自适应无迹卡尔曼滤波(AUKF)作为局部滤波器的分布式融合估计方法.通过引入改进的Sage-Husa噪声估计器自适应过程噪声.根据特征点识别量将遮挡情况分为部分遮挡和严重遮挡,对部分遮挡子系统根据先验信息修复缺失观测点后进行局部滤波估计,严重遮挡子系统不参与融合,利用当前时刻整体估计结果对其进行初始化.通过仿真获取了区分遮挡情况的阈值,实验结果表明所提方法能够提升系统在遮挡情况下的估计精度与鲁棒性. 相似文献
4.
5.
一种卡尔曼增益约束滤波算法 总被引:1,自引:0,他引:1
在滤波过程中,将卡尔曼增益结合约束条件,可以有效地提高滤波精度.论文推导了含有卡尔曼增益约束条件的代价函数,根据Karush-Kuhn-Tucker(KKT)最小化的一阶必要条件,使用高斯牛顿法求出约束卡尔曼增益的最优约束解.最后对具有约束条件的目标跟踪问题进行了仿真实验,结果表明该算法的跟踪精度要高于普通卡尔曼滤波算法. 相似文献
6.
7.
现有的适用于惯性-地磁组合的姿态解算算法存在一个共性问题,即或者过于依赖陀螺仪而使得算法的动态精度较高但静态精度较差,或者过于依赖加速度计和地磁传感器组合而出现相反的结果,利用线加速度矢量的模动态调整对上述两者的依赖程度虽然有效但问题较大。提出实时估计加速度计输出矢量与地磁传感器输出矢量的向量积的模,并将估计残差作为姿态解算算法-扩展卡尔曼算法的观测噪声而构成自适应卡尔曼算法,该估计残差的特点是零均值、平稳且其方差在运动体运动时会明显增大,从而使得所提出的自适应卡尔曼算法兼具良好的静动态性能。实验比较了MTi及ADIS16480内置的卡尔曼算法和该文构造的自适应卡尔曼算法,结果证明了后者的有效性。 相似文献
8.
9.
为了对船电缆绝缘状态进行在线监测,提高混频注入法在电缆绝缘监测中电流检测的精度,将粒子群优化算法和无迹卡尔曼滤波算法相结合.采用无迹卡尔曼滤波算法分别对注入的低频信号和高频信号进行检测,并利用粒子群优化算法优化无迹卡尔曼滤波算法的状态噪声协方差和观测噪声协方差.利用Matlab建立的含注入信号的电力系统模型对算法进行验... 相似文献
10.
一种改进扩展卡尔曼算法的伪码跟踪优化仿真 总被引:1,自引:0,他引:1
针对当前方法存在伪码跟踪结果不准确的问题,提出基于改进扩展卡尔曼算法的伪码跟踪优化方法。利用振幅、采样时间和码相位等条件计算输入信号,获取到伪码信号的初始位置,建立伪码跟踪环路模型。通过代价函数的计算来分析伪码的跟踪性能,获取状态的预测值和预测方差,并计算代价函数的极小值,利用高精度的迭代方法对方差和协方差展开计算,得到分解因式,计算伪码的容积点,完成对伪码的跟踪,并求得伪码环路模型的解,实现伪码的跟踪优化。实验结果表明,所提方法在对伪码跟踪优化时,具有较好的跟踪性能,并且伪码的相位误差较小,能够准确的完成对伪码的跟踪。 相似文献
11.
针对QAR数据包含离群值、噪声值等异常数据严重影响数据分析的问题,提出了一种自适应无迹卡尔曼滤波的数据降噪方法.利用改进拉依达准则剔除粗大误差数据,以无迹卡尔曼滤波为基础,结合Sage-Husa噪声估计器对系统噪声进行实时预测和修正,有效地解决了系统噪声时变的问题.利用空客A330飞机的数据样本对算法有效性进行了数值验... 相似文献
12.
13.
在工程实际中,由于环境因素的影响、测量设备的不稳定性、模型和参数的选取不当等往往会对量测方程带来未知的系统误差.针对这一问题,提出了一种自适应高阶无迹增量卡尔曼滤波算法.首先,利用增量建模技术建立增量量测方程.其次,将其与高阶无迹卡尔曼滤波器相结合,并引入自适应加权因子对滤波发散进行抑制,发展出一种自适应增量滤波算法.计算机仿真实验表明,新算法能够成功消除这种未知的系统误差,提高估计精度和稳定性,具备良好的应用前景. 相似文献
14.
为了提高UKF的运算效率,本文分析了UKF中各参数对滤波效果的影响,给出了一种系统状态转移矩阵为线性变换时UKF的优化算法,并证明了本算法的正确性。针对野值影响UKF精度的缺陷,本文提出了使用新息判断野值是否存在的检测方法。对于野值存在的情况首先剔除野值,然后根据已经得到的滤波状态应用最小二乘法对当前状态进行预测估计,对于野值不存在的情况直接使用UKF滤波,最后推导了使用最小二乘法拟合野值存在时估计的合理性,从而证明了这种方法可以极大地提高UKF抗野值的能力。本文最后用具体的仿真实例说明了最小二乘法与UKF相结合算法消除野值的有效性。 相似文献
15.
将无味卡尔曼滤波(Unscented Kalman filter,UKF)应用于雷达配准,提出一种新的多雷达方位配准算法。在该算法中,目标的运动状态和方位误差由选定的采样点来近似,在每个更新过程中,采样点随着状态方程传播并随非线性测量方程变换,得到目标的运动状态和方位误差的均值,避免了对非线性方程的线性化,且具有较高的计算精度。与传统的扩展卡尔曼滤波(Extended Kalman filter,EKF)方法进行了仿真比较,结果表明UKF方法能有效地克服非线性跟踪问题中很容易出现的滤波发散问题,且估计精度高于UKF方法。 相似文献
16.
程水英 《计算机工程与应用》2008,44(24):25-35
综述了非线性估计问题的由来、无味变换(UT,Unscented Transformation)的基本思路与基本算法、各种衍变形式、σ点集的设计原则、无味卡尔曼滤波(UKF,Unscented Kalman Filtering)的基本算法及其各种改进算法、UT的本质、UKF与几种免微分非线性滤波方法的比较、UT与UKF的相关应用、针对几种UKF算法的仿真实例,以及目前在UT与UKF的研究中尚存在的一些问题和对今后研究的展望等;提出了笔者的一些最新研究成果和见解。 相似文献
17.
迭代无味卡尔曼滤波器 总被引:2,自引:0,他引:2
通过对无味卡尔曼滤波器(Unscented Kalman filter,UKF)的误差进行分析,提出了迭代UKF(IUKF)算法.该基本思路是用测量更新后的状态估计去重新对状态量和观测量的一步预测,然后再次应用LMMSE估计子估计状态量的均值和协方差阵,如此多次迭代后的滤波估计输出具有更高的精度和更小的方差,故滤波器表现出更好的一致性.Monte Carlo仿真表明,IUKF主要应用于观测噪声较小的场合,其中的迭代只需进行2~3次即可. 相似文献
18.
Deng Fang Yang Hua-Lin Wang Long-Jin 《International Journal of Control, Automation and Systems》2019,17(3):667-678
International Journal of Control, Automation and Systems - A novel adaptive unscented Kalman filter (AUKF) is presented and applied to ship dynamic positioning (DP) system with model uncertainties... 相似文献
19.
卡尔曼滤波是惯导系统(INS)/GPS组合导航的主要算法之一,Sage-Husa算法是在卡尔曼滤波基础上,为减少系统噪声和量测噪声的不确定性对误差估计的影响而采用的自适应估计方法.对Sage-Husa算法提出了4条改进措施;并通过在3种数据扰动情形下的仿真计算发现,只对一类噪声做自适应估计更容易产生较大的偏差,对系统噪声和量测噪声两类噪声同时做自适应估计,其效果要优于只对一类噪声做自适应估计,把此现象定义为卡尔曼滤波的系统和量测噪声自适应估计的关联性.这个结果不同于一些文献的观点.此项研究对自适应卡尔曼滤波在INS/GPS组合导航的工程化应用有较高的实用价值. 相似文献
20.
卡尔曼滤波是在线性高斯情况下利用最小均方误差准则获得目标的动态估计,但在实际系统中,许多情况下观测数据与目标动态参数间的关系是非线性的。对于非线性滤波问题,至今尚未得到完善的解法。本文采用了两种方法来进行滤波:一种是将观测变量进行坐标系变化,使量测方程线性化,然后直接进行线性卡尔曼滤波;另一种方法是直接采用非线性滤波方法的不敏卡尔曼滤波。对仿真导弹轨迹的仿真结果显示,第一种方法在本系统中优于第二种方法。 相似文献