首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compression–compression fatigue test study of a fire resistant Eco-Core was conducted at two values of stress ratios (R = 10 and 5). Tests were conducted at Smin/So values of 0.9–0.6 for R = 10 and 0.95–0.8 for R = 5. Here Smin is the maximum compression stress and So is the compression strength. The study showed that Eco-Core has well defined failure modes and associated fatigue lives. The failure modes are: damage on-set; damage progression, and final failure. The damage on-set, propagation and final failure were characterized by 2%, 5% and 7% changes in compliance. The three failure modes were found to be same for both static and fatigue loadings. The endurance limit was found to be 0.72So, 0.75So and 0.76So, respectively for three failure modes for R = 10 and 0.81So, 0.82So and 0.82So, respectively for R = 5. The fatigue life is defined by a power law equation, Smin/So = AoNα. Constants of the equation were established for all three modes of failures and the two stress ratios. Finally, fatigue life was found to be less sensitive to R ratio when expressed in terms of stress range versus number of load cycles, which is similar to that of metallic materials.  相似文献   

2.
Eco-Core is a class of syntactic foam made from small volume of high char yield binder and large volume of a class of flyash for fire resistance application. Very little or no flexural fatigue data of this class of core material is reported in the open literature. This paper presents a flexural fatigue response of Eco-Core in a glass/vinyl ester composite face sheet sandwich beam. A four-point loaded flexural test specimen was designed and tested in static and fatigue loadings to cause tension failure in the core. The fatigue test was conducted at maximum cyclic stress (σmax) ranged from 0.7σct to 0.9σct, where σct is the static flexural strength of the core. The sinusoidal loading frequency of 2 Hz with the stress ratio of 0.1 was used. Flexural fatigue failure modes of Eco-Core sandwich beam were classified: damage onset (single tension crack), damage progression (multiple tension cracks) and ultimate failure (a combination of tension and shear). These failures were characterized by 1%, 5% and 7% changes in compliance that corresponds to N1%, N5% and N7% lives. The fatigue stress-life (S–N) relationship was found to follow the well-known power law equation, σmax/σct = AoNα. The constants Ao and α were established for all three types of failures. The endurance limit was established based on 1 million cycles limit and it was found to be 0.65σct, 0.70σct and 0.71σct, respectively for the three modes of failure. Flexural fatigue and static failure modes of Eco-Core sandwich beams were similar.  相似文献   

3.
The HASTELLOY® C-22HSTM alloy is a face-centered cubic (fcc), nickel-based, corrosion-resistant superalloy. In the present study, the low-cycle-fatigue behaviors of the alloy were examined by in situ neutron diffraction at room temperature. The fatigue parameters included a total strain range of Δε = 2% and a strain ratio of R = −1 (R = εmin/εmax, where εmin and εmax are the applied minimum and maximum strains, respectively). The effect of cyclic deformation on the lattice strains was studied as a function of cyclic straining. The cyclic hardening and softening behaviors during fatigue is discussed in light of the relationship between the peak widths and lattice strains.  相似文献   

4.
Cyclic torsion fatigue tests with superimposed static torsion loads are performed with VDSiCr spring steel with shot-peened surface in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime. Fatigue properties are investigated at load ratios R = 0.1, R = 0.35 and R = 0.5 up to limiting lifetimes of 5 × 109 cycles with a newly developed ultrasonic torsion testing method. Increasing the load ratio reduces the shear stress amplitude that the material can withstand without failure. Fatigue cracks are initiated at the surface in the HCF regime. In the VHCF regime, cracks are preferentially initiated internally in the matrix, below the surface layer with compression residual stresses, and less frequently at the surface. Cyclic and mean shear stresses with 50% survival probability in the VHCF regime are presented in a Haigh diagram. Linear line approximation delivers a mean stress sensitivity of M = 0.33 for load ratios between R = −1 and R = 0.5.  相似文献   

5.
Effect of stress ratio on fatigue properties of a titanium alloy (TC-17) in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) were investigated by electromagnetic and ultrasonic fatigue testing. The SN curves at R = −1, 0.1, 0.5 and 0.7 at 110 Hz and 20 kHz were obtained and discussed. The effects of frequency on fatigue strength was also investigated. It was concluded that the fatigue strength with 50% fatigue failure probability at R = 0.1, 0.5 and 0.7 is lower to the Goodman line and shows a bilinear decreasing trend. Cleavage fracture of primary grains in the surface and interior initiation zone were observed. The formation of the facets induced by the basal or prismatic slips of the H.C.P grains decreased the fatigue strength with variation in mean stress.  相似文献   

6.
Fatigue properties of 2024-T351 aluminium alloy are investigated in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime. Endurance tests are performed with ultrasonic equipment at 20 kHz cycling frequency at load ratios of R = −1, R = 0.1 and R = 0.5 up to 1010 cycles. Additional servo-hydraulic tests between 8 and 10 Hz at R = 0.1 show no frequency influence on fatigue lifetimes. Linear lines in double logarithmic SN plots are used to approximate data. Slope exponents of approximation lines increase with increasing numbers of cycles for all load ratios. Failures above 5 × 109 cycles (R = −1 and R = 0.1) or 1010 cycles (R = 0.5) occur, and no fatigue limit is found. Fatigue cracks leading to failures above 109 cycles are initiated at the surface or slightly below at broken constituent particles or at agglomerations of fractured particles, which are probably Al7Cu2(Fe, Mn). Specimens stressed with more than 1010 cycles at R = −1 without failure show several cracks starting at constituent particles. Maximum crack lengths are 30 μm, which is considerably below grain size.  相似文献   

7.
The fatigue crack growth behaviour of short corner cracks in the Aluminium alloy Al 6013-T6 was investigated. The aim was to determine the crack growth rates of small corner cracks at a stress ratio of R = 0.1, R = 0.7 and R = 0.8 and to find a possible way to predict these crack growth rates from fatigue crack growth curves determined for long cracks. Corner cracks were introduced into short crack specimens, similar to M(T) – specimens, at one side of a hole (Ø = 4.8 mm) by cyclic compression (R = 20). The precracks were smaller than 100 μm (notch + precrack). A completely new method was used to cut very small notches (10–50 μm) into the specimens with a focussed ion beam. The results of the fatigue crack growth tests with short corner cracks were compared with the long fatigue crack growth test data. The short cracks grew at ΔK-values below the threshold for long cracks at the same stress ratio. They also grew faster than long cracks at the same ΔK-values and the same stress ratios. A model was created on the basis of constant Kmax-tests with long cracks that gives a good and conservative estimation of the short crack growth rates.  相似文献   

8.
Three types of welded joints have been assessed with regard to their fatigue strength based on the mean-stress damage parameter model according to Smith, Watson, and Topper (PSWT) and on the reference notch radius concept. These analyses were performed with three different stress ratios, R = −1, R = 0 and R = 0.5, under axial loading. For each stress level, the corresponding Neuber-Hyperbolas, Masing-loops and their maximum stress and maximum strain values were determined in order to calculate damage parameter (PSWT) values. For a given weld geometry, this damage parameter is able to unify the fatigue results for different R-values within at a tight scatter band and therefore to consider the mean-stress effect. The unification of the results for different weld geometries is performed by applying the reference radii rref = 0.05 and rref = 1.00 mm as suggested by the IIW-Recommendations.  相似文献   

9.
Duplex stainless steels (DSS) fatigue crack propagation resistance is strongly affected by both microstructure and environment. In this work, environment influence on the fatigue crack propagation in a 22 Cr 5 Ni duplex and in a 25 Cr 7 Ni superduplex stainless steels is investigated considering three different stress ratios (R = Kmin/Kmax = 0.1, 0.5, 0.75). Tests are performed according to ASTM E 647 standard, both in air and under hydrogen charging conditions (0.1 M H2SO4 + 0.01 M KSCN aqueous solution, ?0.9 V/SCE). Crack fracture surfaces are extensively analysed by means of a scanning electron microscope. Furthermore, crack paths are investigated by means of a crack profile analysis performed through a light optical microscope. Nickel coated fracture surface sections obtained for constant ΔK values are considered in order to analyse the loading (R values) and environment influence on fatigue crack paths.  相似文献   

10.
Investigations are presented in this paper on quenched and tempered steel 42CrMoS4 from two batches, with two different tensile strengths (Rm = 1100 MPa, 1350 MPa) but with similar microstructure, and a nodular cast iron EN-GJS-900-2 (Rm = 930 MPa). Fatigue tests with smooth (Kt = 1) and notched (Kt = 1.75) specimens were performed at R = −1 and R = 0 up to the number of cycles N = 2·109 in order to determine the fatigue strength behaviour and failure mechanisms, especially in the VHCF-region. Failure in smooth specimens often initiated at material defects such as oxides in the quenched and tempered steel and shrinkage holes in the nodular cast iron. Firstly, a fatigue strength analysis was performed that did not consider these defects. A possibility of analysis of experimental data including VHCF-results has been discussed. Next, a linear elastic fracture mechanics analysis was performed in order to describe the defect behaviour, assuming that the defects act like cracks. The results showed that there are lower limit or threshold values of the stress intensity factor range ΔK for crack propagation in both materials. Analysis of defects and defect distribution in run-out specimens confirmed this conclusion. From the comparison of the results with an SN curve from the design code FKM-Guideline Analytical strength assessment of components, recommendations for design and assessment of components have been derived.  相似文献   

11.
Tension–tension fatigue properties of SiC fiber reinforced Ti–6Al–4V matrix composite (SiCf/Ti–6Al–4V) at room temperature were investigated. Fatigue tests were conducted under a load-controlled mode with a stress ratio 0.1 and a frequency 10 Hz under a maximum applied stress ranging from 600 to 1200 MPa. The relationship between the applied stress and fatigue life was determined and fracture surfaces were examined to study the fatigue damage and fracture failure mechanisms using SEM. The results show that, the fatigue life of the SiCf/Ti–6Al–4V composite decreases substantially in proportion to the increase in maximum applied stress. Moreover, in the medium and high life range, the relationship between the maximum applied stress and cycles to failure in the semi-logarithmic system could be fitted as a linear equation: Smax/μ = 1.381  0.152 × lgNf. Fractographic analysis revealed that fatigue fracture surfaces consist of a fatigued region and a fast fracture region. The fraction of the fatigued region with respect to the total fracture surface decreases with the increase of the applied maximum stresses.  相似文献   

12.
The ball eye (BE) is a key connecting component between the insulator and transmission tower, whose fatigue characteristics concern the safety of transmission lines. To understand the fatigue mechanism and characteristics of it, the fatigue test was conducted based on the following data: r = 0.25, S = 500 MPa,then plotting of SN and Δεaxis  N, to analyze the fatigue failure of the test specimen from the macro and micro point of views. The research results show that: the life of BE significantly reduces with the increase of the stress amplitude, but the relative reduction in life is not the same; softening and strain amplitude of the specimen change differently before and after the stress amplitude of 300 MPa; when S  300 MPa, the fracture is more smooth, the fatigue crack propagation is slow; when S > 300 MPa, the rate of fatigue crack growth is faster, and the fatigue crack growth zones are not obvious. The cracks are easily detectable appear at the joint of the BE and insulator cap, and the cracks along the fracture cross section are constantly expanding, showing multiple fatigue sources and fatigue steps. The number of fatigue steps increases as the magnitude of the tensile stress increases. When S = 500 MPa, the yield strength decreases during the lifetime, the decrease rate of the tensile strength and microstructure strength in each stage are different. Axial lengthening and section shrinkage ratio decrease with the development of fatigue, fatigue evolution process is accompanied by phenomenon of crystalline slip, deformation, dislocation, at the same time, dissipation and decomposition of pearlite occur, and carbide precipitates from the matrix, growing and moving to the grain boundaries, the specific phenomenon of grain growth appears.  相似文献   

13.
Fatigue behavior of double spot friction welded joints in aluminum alloy 7075-T6 plates is investigated by conducting monotonic tensile and fatigue tests. The spot friction welding procedures are carried out by a milling machine with a designed fixture at the best preliminary welding parameter set. The fatigue tests are performed in a constant amplitude load control servo-hydraulic fatigue testing machine with a load ratio of (R = Pmin/Pmax) 0.1 at room temperature. It is observed that the failure mode in cyclic loading (low-cycle and high-cycle) resembles that of the quasi-static loading conditions i.e. pure shearing. Primary fatigue crack is initiated in the vicinity of the original notch tip and then propagated along the circumference of the weld’s nugget.  相似文献   

14.
In the automotive sector, the cumulative damage calculation method generally applied is the Palmgren–Miner-Hypothesis with its modification according to Haibach (steeper slope of the SN-line after the knee-point) as a means of also including the damage by stress amplitudes below the knee-point. This approach results in the total damage sum of the spectrum Dspec. However, the resulting question is the value of the allowable damage sum Dal for the evaluation of Dspec  Dal. The only design code that considers the assessment of cast iron components under spectrum loading is the FKM-Guideline of the Cooperative Research Association for Mechanical Engineering (FKM, Frankfurt/Germany) for designing machine components. Here, the theoretical Palmgren–Miner-damage sum Dth = 1.0 is still suggested as the allowable damage sum Dal despite the fact that this damage sum renders unsafe calculated fatigue lives in about 90% of all published results.The results obtained with component-like notched specimens of modern high-strength cast iron alloys (Rm = 650–800 MPa) such as EN-GJS-500-7, SiboDur 700-10 and MADI (Machinable Austempered Ductile Iron), which were investigated under a standard Gaussian spectrum for chassis applications and also for a fuller injection pump spectrum, suggest the allowable damage sum Dal = 0.3 for fatigue life estimations of components manufactured with these materials can be proposed; i.e. the allowable fatigue life is about one third compared to calculations with the theoretical damage sum Dth = 1.0 that is still used.  相似文献   

15.
This paper studies the fatigue behavior of basalt fiber reinforced epoxy polymer (BFRP) composites and reveals the degradation mechanism of BFRP under different stress levels of cyclic loadings. The BFRP composites were tested under tension–tension fatigue load with different stress levels by an advanced fatigue loading equipment combined with in-situ scanning electron microscopy (SEM). The specimens were under long-term cyclic loads up to 1 × 107 cycles. The stiffness degradation, SN curves and the residual strength of run-out specimens were recorded during the test. The fatigue strength was predicted with the testing results using reliability methods. Meanwhile, the damage propagation and fracture surface of all specimens were observed and tracked during fatigue loading by an in-situ SEM, based on which damage mechanism under different stress levels was studied. The results show the prediction of fatigue strength by fitting SN data up to 2 × 106 cycles is lower than that of the data by 1 × 107 cycles. It reveals the fatigue strength perdition is highly associated with the long-term run-out cycles and traditional two million run-out cycles cannot accurately predict fatigue behavior. The SEM images reveal that under high level of stress, the critical fiber breaking failure is the dominant damage, while the matrix cracking and interfacial debonding are main damage patterns at the low and middle fatigue stress level for BFRP. Based on the above fatigue behavior and damage pattern, a three stage fracture mechanism model under fatigue loading is developed.  相似文献   

16.
A series of fatigue experiments was performed in order to investigate the effect of the R-ratio on the fatigue/fracture behavior of adhesively-bonded pultruded GFRP double cantilever beam joints. Constant amplitude fatigue experiments were carried out under displacement control with a frequency of 5 Hz in ambient laboratory conditions. Three different R-ratios were applied: R = 0.1, R = 0.5 and R = 0.8. The crack length was determined by means of crack gages and a dynamic compliance method. The dominant failure mode was a fiber-tear failure that occurred in the mat layers of the pultruded laminates. The depth of the crack location significantly affected the energy dissipated for the fracture under cyclic loading. Short-fiber and roving bridging increased the fracture resistance during crack propagation. Fatigue crack growth curves were derived for each R-ratio and each observed crack path location. The fatigue threshold and slope of the fatigue crack growth curve significantly increased with increased R-ratio.  相似文献   

17.
This paper presents a stress based approach to take into account the influence of the mean stress value on fatigue strength of constructional materials. Elaborated model uses two SN curves, i.e. for alternating stress (R = −1) and another one obtained under stress ratio R  −1, for calibrating the equations of boundary condition. Two particular equations for the coefficient of intensification in stress transformations were proposed. The main advantage of the proposed solution is that the mean stress effect correction depends on the number of cycles to failure, what corresponds to the observed changes in experimental results presented in the literature. Proposed relations were compared with popular models for mean stress correction. The verification was made using selected series of experimental results taken from the literature. It was shown that the proposed solution is well correlated with experimental results.  相似文献   

18.
《Materials Research Bulletin》2006,41(7):1337-1344
The new phases α-NaSbP2S6 and β-NaSbP2S6 were synthesized by ceramic and reactive flux methods at 773 K. The structures of α-NaSbP2S6 and β-NaSbP2S6 were determined by the single-crystal X-ray diffraction technique. α-NaSbP2S6 crystallizes in the monoclinic space group P21/c with a = 11.231(2) Å, b = 7.2807(15) Å, c = 11.640(2) Å, β = 108.99(3)°, V = 900.0(3) Å3 and z = 4. β-NaSbP2S6 crystallizes in the monoclinic space group P21 with a = 6.6167(13) Å, b = 7.3993(15) Å, c = 9.895(2) Å, β = 92.12(3) °, V = 484.10(17) Å3 and z = 2.The α- and β-phases of NaSbP2S6 are closely related, the main difference lies in the stacking of the [Sb[P2S6]]nn layers. The structure of α-NaSbP2S6 consists of two condensed layers (MPS3 type) to give an ABAB… sequence with Na+ cations located in the interlayer space. The packing of β-NaSbP2S6 is formed by monolayers of [Sb[P2S6]]nn stacked in an AA… fashion separated by a layer of Na+ cations. Both phases are derivates of the M1+M3+P2Q6 family.The optical band gaps of α-NaSbP2S6 and β-NaSbP2S6 were determined by UV–vis diffuse reflectance measurements to be 2.17 and 2.25 eV, respectively.  相似文献   

19.
Experimental results indicate that the fatigue life reduces by about two orders of magnitude when inclusion size doubles. Then, a model is proposed for predicting the fatigue strength of high-strength steels with fish-eye mode failure based on the experimental results for the effect of inclusion size and stress ratio. In the model, the effect of inclusion size a0 and stress ratio R on fatigue strength σa is expressed as σa  a0m[(1  R)/2]α, where m and α are material parameters. The predicted results are in good agreement with our experimental results and the ones reported in literature.  相似文献   

20.
Effects of anisotropy and temperature on cyclic deformation and fatigue behavior of two short glass fiber reinforced polymer composites were investigated. Fatigue tests were conducted under fully-reversed (R = −1) and positive stress ratios (R = 0.1 and 0.3) with specimens of different thicknesses, different fiber orientations, and at temperatures of −40 °C, 23 °C, and 125 °C. In samples with 90° fiber orientation angle, considerable effect of thickness on fatigue strength was observed. Effect of mold flow direction was significant at all temperatures and stress ratios and the Tsai–Hill criterion was used to predict off-axis fatigue strengths. Temperature also greatly influenced fatigue strength and a shift factor of Arrhenius type was developed to correlate fatigue data at various temperatures, independent of the mold flow direction and stress ratio. Micromechanisms of fatigue failure at different temperatures were also investigated. Good correlations between fatigue strength and tensile strength were obtained and a method for obtaining strain–life curves from load-controlled fatigue test data is presented. A fatigue life estimation model is also presented which correlates data for different temperatures, fiber orientations, and stress ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号