首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The surfactant effect of Ag on the thin film structure of TiO2 by radio frequency magnetron sputtering has been investigated. Comparisons between the atomic force microscopy images revealed that the surface roughness of TiO2 film mediated by Ag was smaller than that of the TiO2 film without Ag. The surface segregation effect of Ag was confirmed using X-ray photoelectron spectroscopy. The results of X-ray diffraction revealed that the initial deposition of a 0.4 nm thick Ag surfactant layer onto a Fe buffer layer prior to the deposition of the TiO2 film reduced the rutile (110) growth and enhanced the anatase (100) growth. It was concluded that Ag was an effective surfactant for changing the thin film structure of TiO2 on the Fe buffer layer. The photocatalytic effect of the fabricated TiO2 film was also investigated using the remote oxidation process. TiO2 films with the Ag surfactant exhibited higher photocatalytic activity than conventionally deposited TiO2 films.  相似文献   

2.
《Thin solid films》2006,494(1-2):274-278
In the present study, nanocrystalline TiO2/Ag composite thin films were prepared by a sol–gel spin coating technique. While, by introducing polystyrene (PS) microspheres, porous TiO2/Ag films were obtained after calcining at a temperature of 500 °C. The as-prepared TiO2 and TiO2/Ag thin films were characterized by X-ray diffractometry, and scanning electron microscopy to reveal the structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation.After 500 °C calcination, the microstructure of PS-TiO2 film without Ag addition exhibited a sponge-like microstructure while significant sintering effect was noticed with Ag additions and the films exhibited a porous microstructure. Meanwhile, coalescence of nanocrystalline anatase-phase TiO2 can be observed with respect to the sharpening of XRD diffraction peaks. The photodegradation of porous TiO2 doped with 1 mol% Ag exhibited the best photocatalytic efficiency where 72% methylene blue can be decomposed after UV exposure for 12 h.  相似文献   

3.
In the present study, Ag/SiO2–TiO2 thin films on ceramic tiles with glazed surface were successfully prepared by a liquid phase deposition method (LPD) at a low temperature. The Ag/SiO2–TiO2 thin films obtained were homogenous, well adhered and colored by interference of reflected light. The films were characterized by scanning electron microscopy and X-ray diffraction. From these analysis data, it was found that silver (Ag) nanoparticles were trapped in SiO2–TiO2 matrix. The antibacterial effects of Ag/SiO2–TiO2 thin films against S. aureus and E. coli were examined by the so-called antibacterial-drop test. The bactericidal activity for the above bacteria cells was estimated by relative number of bacteria survived calculated from the number of viable cells which form colonies on the nutrient agar plates. The Ag/SiO2–TiO2 thin films had an excellent antibacterial performance. Atomic absorption spectroscopy (AAS) was used for the quantitative determination of the Ag ion concentration releasing from the Ag/SiO2–TiO2 thin film. The releasing rate of Ag ions from the Ag/SiO2–TiO2 film is 0.123 μg/mL during 192 h. The antibacterial effect of Ag/SiO2–TiO2 thin film before and after aging in a weathering chamber for 48 h was compared and the results show that the antibacterial activity is not compromised after weathering.  相似文献   

4.
A transparent, high purity titanium dioxide thin film composed of densely packed nanometer sized grains has been successfully deposited on a glass substrate at 30°C from an aqueous solution of TiO2-HF with the addition of boric acid as a scavenger by liquid phase deposition technique. From X-ray diffraction measurement, the deposited film was found to be amorphous and turns crystalline at 500°C. The deposited film showed excellent adherence to the substrate and was characterized by homogeneous flat surface. TiO2 thin films can be used as a photocatalyst to clean up organohalides, a class of compound in pesticides that pollute the ground water. Photocatalytic degradation experiments show that indanthrene golden orange dye undergoes degradation efficiently in presence of TiO2 thin films by exposing its aqueous solution to ultraviolet light. The suitable surface structure and porosity increases the photocatalytic activity. It was also observed that hemin doped TiO2 thin films break up organohalides at a surprisingly high rate under visible light.  相似文献   

5.
Substrate dipping in a composite sol–gel solution was used to prepare both smooth and rough thin films of titanium dioxide (TiO2) on commercial fiberglass. The deposition of a composite film was done in a beaker using a solution of titanium (IV) isopropoxide as the sol–gel precursor and cetyltrimethyl ammonium bromide as the surfactant. In order to establish a correlation between experimental conditions and the titanium oxide produced, as well as the film quality, the calcined samples were characterized using Raman spectroscopy, UV–vis spectrophotometry, scanning electron microscopy and atomic force microscopy. One of the most important results is that a 61-nm TiO2 film was obtained with a short immersion of fiberglass into the sol–gel without surfactant. In other cases, the deposited film consisted of a titanium precursor gel encapsulating micelles of surfactant. The gel films were converted to only the anatase phase by calcining them at 500 °C. The resulting films were crystalline and exhibited a uniform surface topography. In the present paper, it was found that the TiO2 films prepared from the sol–gel with a surfactant showed a granular microstructure, and are composed of irregular particles between 1.5 and 3 μm. Smooth TiO2 films could have useful optical and corrosion-protective properties and, on other hand, roughness on the TiO2 films can enhance the inherent photocatalytic activity.  相似文献   

6.
Titanium oxide thin films were deposited by DC reactive magnetron sputtering on ZnO (80 nm thickness)/soda-lime glass and SiO2 substrates at different gas pressures. The post annealing on the deposited films was performed at 400 °C in air atmosphere. The results of X-ray diffraction (XRD) showed that the films had anatase phase after annealing at 400 °C. The structure and morphology of deposited layers were evaluated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface grain size and roughness of TiO2 thin films after annealing were around 10-15 nm and 2-8 nm, respectively. The optical transmittance of the films was measured using ultraviolet-visible light (UV-vis) spectrophotometer and photocatalytic activities of the samples were evaluated by the degradation of Methylene Blue (MB) dye. Using ZnO thin film as buffer layer, the photocatalytic properties of TiO2 films were improved.  相似文献   

7.
Xiaozheng Yu  Zhigang Shen 《Vacuum》2011,85(11):1026-1031
In the present study, TiO2 films were deposited on the surface of cenosphere particles using the modified magnetron sputtering equipment under different working conditions. The resulting films were characterized by field emission scanning electron microscopy (FE-SEM), Atomic Force Microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The FE-SEM and AFM results show that the grain sizes and root-mean-square (RMS) roughness values of the TiO2 films increase with the increase in deposition time and film thickness. The XRD results indicate that the film was TiO2 film and sputtering time is an importance condition to influence the films crystal. With the increasing of sputtering time, the crystallization of the TiO2 film was increased. The XPS results show that only TiO2 films existed on the surface of cenosphere particles. In addition, the photocatalytic activities of these films were investigated by degrading methyl orange under UV irradiation. The results suggest that the photocatalytic activity of cenosphere particles with anatase TiO2 films is remarkable and this catalyst can be applicable for the photocatalytic degradation of other organic compounds under UV lights.  相似文献   

8.
Anatase titanium dioxide (TiO2) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO2 pellets as the source material. Highly transparent TiO2 thin films prepared at substrate temperatures from room temperature to 400 °C exhibited photocatalytic activity, regardless whether oxygen (O2) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO2 thin films prepared at 300 °C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO2 thin film with a resistivity of 2.6 × 10− 1 Ω cm was prepared at a substrate temperature of 400 °C without the introduction of O2 gas.  相似文献   

9.
Ag-TiO2 nanostructured thin films with silver volume fraction of 0–40% were prepared by RF magnetron sputtering. The microstructure, surface topography, and optical properties of the films were characterized by X-ray diffractometer, transmission electron microscope, and ultraviolet–visible spectrophotometer. Photocatalytic activity of the films was evaluated by light-induced degradation of methyl orange (C14H14N3NaO3S) solution using a high pressure mercury lamp as lamp-house. The relation of photocatalytic activity and silver content was studied in detail. It is found that silver content influences microstructure of TiO2 thin films, and silver in the films is metallic Ag (Ag0). Photocatalytic activity of the films increases with increasing silver content up to 5 vol.% Ag and then decreases to values significantly still bigger than that of pure TiO2 thin films. Silver nanoparticles significantly enhance the photocatalytic activity of TiO2 films. The better separation between electrons and holes on silver modified TiO2 thin films surface allowed more efficiency for the oxidation and reduction reactions. The enhanced photocatalytic activity was mainly attributed to the decrease of energy gap of the films and the increase of oxygen anion radicals O2 and reactive center of surface Ti3+ on silver modified TiO2 thin films surface.  相似文献   

10.
This study reports on the synthesis, characterisation and environmental applications of immobilised Titanium dioxide (TiO2) as photocatalyst. Nanostructured thin films have been prepared on glass substrates using a layer-by-layer dip-coating method. The crystalline phase and surface morphology of the thin films were investigated by X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM), respectively. The XRD results show that the TiO2 thin films crystallise in anatase phase and we have found that the thin films consist of titanium dioxide nanocrystals. SEM shows that the nanoparticles are sintered together to form a compact structure and TiO2 particles coated with silver nanoclusters were observed. Ag-coated TiO2 films demonstrated photocatalysis performance when irradiated, and the Ag carrier further showed an electron-scavenging ability to mitigate electron–hole pair recombination, which can improve the photocatalytic efficiency. With the oxidisation and electron-scavenging ability of Ag and the photocatalysis ability of TiO2, Ag-coated TiO2 can decolour methyl orange (MO) more than bare TiO2. It is a new approach to form Ag-coated TiO2 nanoparticles with a simple system and non-toxic materials. The high photocatalytic effect of Ag-coated TiO2 nanoparticles on pollutant (MO) suggests that it may have a promising future for water and wastewater treatments.  相似文献   

11.
TiO2 thin films for dyes photodegradation   总被引:1,自引:0,他引:1  
The aim of the present study is to investigate the influence of the TiO2 specific surface (powder, film) on the photocatalytic degradation of methyl orange. Porous TiO2 films were deposited on transparent conducting oxide substrates by spray pyrolysis deposition. The films were characterized by X-ray diffraction (XRD), Scanning Electronic Microscopy, and the UV-Vis spectroscopy. The XRD spectra of nanoporous TiO2 films revealed an anatase, crystalline structure that is known as the most suitable structure in photocatalysis. The average thickness of the films was 260 nm and the measured band gap is 3.44 eV. The influence of the operational parameters (dye concentration, contact time) on the degradation rate of the dye on TiO2 was examined. There were calculated the kinetic parameters and the process efficiency. Using thin films of TiO2 is technologically recommended but raises problems due to lowering the amount of catalyst available for the dye degradation.  相似文献   

12.
Titanium dioxide (TiO2) thin films were prepared on Galvanized Iron (GI) substrate by plasma-enhanced atomic layer deposition (PE-ALD) using tetrakis-dimethylamido titanium and O2 plasma to investigate the photocatalytic activities. The PE-ALD TiO2 thin films exhibited relatively high growth rate and the crystal structures of TiO2 thin films depended on the growth temperatures. TiO2 thin films deposited at 200 °C have amorphous phase, whereas those with anatase phase and bandgap energy about 3.2 eV were deposited at growth temperature of 250 °C and 300 °C. From contact angles measurement of water droplet, TiO2 thin films with anatase phase and Activ™ glass exhibited superhydrophilic surfaces after UV light exposure. And from photo-induced degradation test of organic solution, anatase TiO2 thin films and Activ™ glass decomposed organic solution under UV illumination. The anatase TiO2 thin film on GI substrate showed higher photocatalytic efficiency than Activ™ glass after 5 h UV light exposure. Thus, we suggest that the anatase phase in TiO2 thin film contributes to both superhydrophilicity and photocatalytic decomposition of 4-chlorophenol solution and anatase TiO2 thin films are suitable for self-cleaning applications.  相似文献   

13.
In the present work the nanostructured carbon-doped TiO2 thin films with nanorod morphology were deposited on glass substrate by a combination of ultrasonic and chemical vapor deposition methods, and for the first time were applied for the photocatalytic degradation of paraoxon and parathion organophosphorus pesticides under visible light irradiation. X-ray Diffraction, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, and scanning electron microscopy techniques were used for characterization of the prepared thin films. Obtained results show that presence of carbon element and also special nanorod morphology of the thin films remarkably improve the optical properties of TiO2 in visible light region and results in the good visible light photocatalytic activity of the thin films for degradation of the pesticides. The photonic efficiencies of the prepared thin films were also examined based on the international ISO-10678:2010 standard protocol for photocatalytic degradation of methylene blue under UV light irradiation. The results show a maximum photonic efficiency of 0.0312% for the carbon-doped TiO2 thin film with 570 nm thickness, which compared to a reference standard TiO2 films indicates a 30% improvement in photonic efficiency.  相似文献   

14.
The interface between nano-crystalline hydroxyapatite (HA) thin films and a titanium alloy (Ti5Al2.5Fe) has been studied by means of Fourier transform infrared spectrophotometry and X-ray diffraction at grazing incidence. The HA thin films were deposited by radio-frequency magnetron sputtering in low pressure dry argon on substrates kept at low temperature or heated at 550 °C. The effect of film treatment by sputtering and annealing in humid air, as a simple, effective way of restoring the crystallinity and stoichiometry of the HA bulk, was studied in correlation with the development of a titanium oxide layer at the film-substrate interface. An interfacial TiO2 film grew at the interface during annealing in moist air, while a TiO2 layer diffused into the HA films when directly sputtered at 550 °C. The formation of an interfacial titanium oxide layer was inhibited by the insertion of a crystalline TiN buffer interlayer between the substrate and the HA film. Separately, the mechanical characteristics of the different HA films were monitored by nanoindentation to find out how they had been affected.  相似文献   

15.
Photocatalytic properties of porous TiO2/Ag thin films   总被引:1,自引:0,他引:1  
In this study, nanocrystalline TiO2/Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO2/Ag thin films were prepared after calcination at a temperature of 500 °C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO2 films. The as-prepared TiO2 and TiO2/Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation.When PS spheres of different sizes were introduced after calcination, the as-prepared TiO2 films exhibited different porous structures. XRD results showed that all TiO2/Ag films exhibited a major anatase phase. The photodegradation of porous TiO2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure.  相似文献   

16.
Ag–Ti (100 nm) alloy film, and Ti/Ag (100 nm) double-layer and Ti/Ag (100 nm)/Ti triple-layer films were prepared by rf sputtering to investigate the effect of Ti on suppression of agglomeration of the Ag thin film caused by thermal treatment. Scanning electron microscopy revealed that the Ag–Ti and Ti/Ag/Ti films had high thermal stability. X-ray photoelectron spectroscopy analysis showed that the surfaces of both kinds of films were covered with a TiO2 layer after annealing, which was considered to be the key factor for improvement of the thermal stability of the films. In addition, scratch tests indicated improvement of the adhesive strength of the Ti/Ag/Ti film to the SiO2 substrate due to the underlying Ti film layer, which effectively promoted suppression of Ag agglomeration. However, the resistivity of the Ag–Ti films increased abruptly with increasing Ti content due to the impurity scattering effect, and minimum usage of the alloying element was required to achieve low resistivity. In contrast, the Ti/Ag/Ti film exhibited both low resistivity and high thermal stability.  相似文献   

17.
A thin film of polydimethylsiloxane (PDMS) was coated on TiO2 nanoparticles (P-25, Dagussa), and surface structures of the thin films were analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Furthermore, photocatalytic activity of PDMS-coated TiO2 samples with various annealing temperatures was determined using UV irradiation. We show that the 800 °C-annealed sample of PDMS-coated TiO2 showed a two-fold higher photocatalytic activity with respect to the bare TiO2. The enhanced photocatalytic activity was attributed to the greater hydrophilicity of the annealed PDMS coating.  相似文献   

18.
Transparent antireflective SiO2/TiO2 double layer thin films were prepared using a sol–gel method and deposited on glass substrate by spin coating technique. Thin films were characterized using XRD, FE-SEM, AFM, UV–Vis spectroscopy and water contact angle measurements. XRD analysis reveals that the existence of pure anatase phase TiO2 crystallites in the thin films. FE-SEM analysis confirms the homogeneous dispersion of TiO2 on SiO2 layer. Water contact angle on the thin films was measured by a contact angle analyzer under UV light irradiation. The photocatalytic performance of the TiO2 and SiO2/TiO2 thin films was studied by the degradation of methylene blue under UV irradiation. The effect of an intermediate SiO2 layer on the photocatalytic performance of TiO2 thin films was examined. SiO2/TiO2 double layer thin films showed enhanced photocatalytic activity towards methylene blue dye.  相似文献   

19.
Highly ordered mesoporous titanium dioxide (titania, TiO2) thin films on indium-tin-oxide (ITO) coated glass were prepared via a Pluronic (P123) block copolymer template and a hydrophilic TiO2 buffer layer. The contraction of the 3D hexagonal array of P123 micelles upon calcination merges the titania domains on the TiO2 buffer layer to form mesoporous films with a mesochannel diameter of approximately 10 nm and a pore-to-pore distance of 10 nm. The mesoporous titania films on TiO2-buffered ITO/glass featured an inverse mesospace with a hexagonally-ordered structure, whereas the films formed without a TiO2 buffer layer had a disordered microstructure with submicron cracks because of non-uniform water condensation on the hydrophobic ITO/glass surface. The density of the mesoporous film was 83% that of a bulk TiO2 film. The optical band gap of the mesoporous titania thin film was approximately 3.4 eV, larger than that for nonporous anatase TiO2 (~ 3.2 eV), suggesting that the nanoscopic grain size leads to an increase in the band gap due to weak quantum confinement effects. The ability to form highly-ordered mesoporous titania films on electrically conductive and transparent substrates offers the potential for facile fabrication of high surface area semiconductive films with small diffusion lengths for optoelectronics applications.  相似文献   

20.
In this study, we have successfully deposited N-doped SiO2/TiO2 thin films on ceramic tile substrates by sol–gel method for auto cleaning purpose. After dip coating and annealing process the film was transparent, smooth and had a strong adhesion on the ceramic tile surface. The synthesised catalysts were then characterised by using several analytical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscope (AFM) and UV-vis absorption spectroscopy (UV-vis). The analytical results revealed that the optical response of the synthesised N-doped SiO2/TiO2 thin films was shifted from the ultraviolet to the visible light region. The nitrogen substituted some of the lattice oxygen atoms. The surface area of co-doped catalyst increased, and its photocatalytic efficiency was enhanced. The photocatalytic tests indicated that nitrogen co-doped SiO2/TiO2 thin films demonstrated higher than of the SiO2/TiO2 activity in decolouring of methylene blue under visible light. The enhanced photocatalytic activity was attributed to an increasing of the surface area and a forming of more hydroxyl groups in the doped catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号