首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new higher order shear deformation theory for elastic composite/sandwich plates and shells is developed. The new displacement field depends on a parameter “m”, whose value is determined so as to give results closest to the 3D elasticity bending solutions. The present theory accounts for an approximately parabolic distribution of the transverse shear strains through the shell thickness and tangential stress-free boundary conditions on the shell boundary surface. The governing equations and boundary conditions are derived by employing the principle of virtual work. These equations are solved using Navier-type, closed form solutions. Static and dynamic results are presented for cylindrical and spherical shells and plates for simply supported boundary conditions. Shells and plates are subjected to bi-sinusoidal, distributed and point loads. Results are provided for thick to thin as well as shallow and deep shells. The accuracy of the present code is verified by comparing it with various available results in the literature.  相似文献   

2.
A higher-order shear deformation theory is used to analyse laminated anisotropic composite plates for deflections, stresses, natural frequencies and buckling loads. The theory accounts for parabolic distribution of the transverse shear stresses, and requires no shear correction coefficients. A displacement finite element model of the theory is developed, and applications of the element to bending, Vibration and stability of laminated plates are discussed. The present solutions are compared with those obtained using the classical plate theory and the three-dimensional elasticity theory.  相似文献   

3.
This paper presents a generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates. We exploit a higher-order shear deformation theory in each layer such that the continuity of the displacement and transverse shear stresses at the layer interfaces is ensured. Thanks for enforcing the continuity of the displacement and transverse shear stresses at an inner-laminar layer, the minimum number of variables is retained from the present theory in comparison with other layerwise theories. The method requires only five variables, the same as what obtained from the first- and higher-order shear deformation theories. In comparison with the shear deformation theories based on the equivalent single layer, the present theory is capable of producing a higher accuracy for inner-laminar layer shear stresses. The free boundary conditions of transverse shear stresses at the top and bottom surfaces of the plate are fulfilled without any shear correction factors. The discrete system equations are derived from the Galerkin weak form, and the solution is obtained by isogeometric analysis (IGA). The discrete form requires the C1 continuity of the transverse displacement, and hence NURBS basis functions in IGA naturally ensure this condition. The laminated composite and sandwich plates with various geometries, aspect ratios, stiffness ratios and boundary conditions are studied. The obtained results are compared with the 3D elasticity solution, the analytical as well as numerical solutions based on various plate theories.  相似文献   

4.
A new shear deformation theory for sandwich and composite plates is developed. The proposed displacement field, which is “m” parameter dependent, is assessed by performing several computations of the plate governing equations. Therefore, the present theory, which gives accurate results, is relatively close to 3D elasticity bending solutions. The theory accounts for adequate distribution of the transverse shear strains through the plate thickness and tangential stress-free boundary conditions on the plate boundary surface, thus a shear correction factor is not required. Plate governing equations and boundary conditions are derived by employing the principle of virtual work. The Navier-type exact solutions for static bending analysis are presented for sinusoidally and uniformly distributed loads. The accuracy of the present theory is ascertained by comparing it with various available results in the literature.  相似文献   

5.
Dipak K Maiti  P K Sinha 《Sadhana》1996,21(5):597-622
In the present investigation, higher-order and conventional first-order shear deformation theories are used to study the impact response of composite sandwich shells. The formulation is based on Donnell’s shallow shell theory. Nine-noded Lagrangian elements are used for the finite element formulation. A modified Hertzian contact law is used to calculate the contact force. The results obtained from the present investigation are found to compare well with those existing in the open literature. The numerical results are presented to study the changes in the impact response due to the increase of core depth from zero to some specified value and the changes in core stiffness for a particular core depth.  相似文献   

6.
A higher-order shear deformation theory of elastic shells is developed for shells laminated of orthotropic layers. The theory is a modification of the Sanders' theory and accounts for parabolic distribution of the transverse shear strains through thickness of the shell and tangential stress-free boundary conditions on the boundary surfaces of the shell. The Navier-type exact solutions for bending and natural vibration are presented for cylindrical and spherical shells under simply supported boundary conditions.  相似文献   

7.
The investigation aims at: (i) constructing a modified higher-order shear deformation theory in which Kirchhoff's hypotheses are relaxed, to allow for shear deformations; (ii) validating the present 5-parameter-smeared-laminate theory by comparing the results with exact solutions; and (iii) applying the theory to a specific problem of the postbuckling behavior of a flat stiffened fiber-reinforced laminated composite plate under compression.The first part of this paper is devoted mainly to the derivation of the pertinent displacement field which obviates the need for shear correction factors. The present displacement field compares satisfactorily with the exact solutions for three layered cross-ply laminates. The distinctive feature of the present smeared laminate theory is that the through-the-thickness transverse shear stresses are calculated directly from the constitutive equations without involving any integration of the equilibrium equations.The second part of this paper demonstrates the applicability of the present modified higher-order shear deformation theory to the post-buckling analysis of stiffened laminated panels under compression. to accomplish this, the finite strip method is employed. A C 2-continuity requirement in the displacement field necessitates a modification of the conventional finite strip element technique by introducing higher-order polynomials in the direction normal to that of the stiffener axes. The finite strip formulation is validated by comparing the numerical solutions for buckling problems of the stiffened panels with some typical experimental results.  相似文献   

8.
In this paper a generalized finite element model is developed for static and dynamic analyses of laminated composite plates using zeroth-order shear deformation theory (ZSDT). The theory ensures the parabolic distribution of transverse shear stresses across the plate thickness. A four-noded plate element is considered in this model and the generalized nodal variables are expressed using Lagrangian linear interpolation functions and Hermitian cubic interpolation functions. The solutions of the finite element model have been compared with the existing solutions for symmetric and antisymmetric laminated composite plates. The comparison confirms that the ZSDT can be efficiently used for finite element analysis of both thin and thick plates with high accuracy.  相似文献   

9.
A two-dimensional global higher-order deformation theory is presented for thermal buckling of cross-ply laminated composite and sandwich plates. By using the method of power series expansion of continuous displacement components, a set of fundamental governing equations which can take into account the effects of both transverse shear and normal stresses is derived through the principle of virtual work. Several sets of truncated Mth-order approximate theories are applied to solve the eigenvalue problems of a simply supported multilayered plate. Modal transverse shear and normal stresses can be calculated by integrating the three-dimensional equations of equilibrium in the thickness direction, and satisfying the continuity conditions at the interface between layers and stress boundary conditions at the external surfaces. Numerical results are compared with those of the published three-dimensional layerwise theory in which both in-plane and normal displacements are assumed to be C0 continuous in the continuity conditions at the interface between layers. Effects of the difference of displacement continuity conditions between the three-dimensional layerwise theory and the global higher-order theory are clarified in thermal buckling problems of multilayered composite plates.  相似文献   

10.
《Composites Part B》2013,44(8):3348-3360
Bending and free vibration analysis of multilayered plates and shells by using a new accurate higher order shear deformation theory (HSDT) is presented. It is one of the most accurate HSDT available in the literature, mainly because new non-polynomial shear strain shape functions (combination of exponential and trigonometric) used in the present theory are richer than polynomial functions, and free surface boundary conditions can be guaranteed a priori. The present HSDT is able to reproduce Touratier’s HSDT as special case. The governing equations and boundary conditions are derived by employing the principle of virtual work. These equations are then solved via Navier-type, closed form solutions. Bending and dynamic results are presented for cylindrical and spherical shells and plates for simply supported boundary conditions. Panels are subjected to sinusoidal, distributed and point loads. Results are provided for thick to thin as well as shallow and deep shells. The present results are compared with the exact three-dimensional elasticity theory and with several other well-known HSDT theories. The present HSDT is found to be more precise than other several existing ones for analyzing the bending and free vibration of isotropic and multilayered composite shell and plate structures.  相似文献   

11.
In this paper, a C0-type higher-order theory is developed for bending analysis of laminated composite and sandwich plates subjected to thermal/mechanical loads. The total number of unknowns in the present theory is independent of number of layers. The continuity conditions of transverse shear stresses at interfaces are a priori enforced. Moreover, the conditions of zero transverse shear stresses on the upper and lower surfaces are also considered. Based on the developed higher order theory, the typical solutions are presented for comparison. It is very important that the first derivatives of transverse displacement w have been taken out from the in-plane displacement fields of the proposed model, so that its finite element counterparts may avoid using the C1 interpolation functions. To assess the developed theory, the C1-type higher-order theory is chosen for comparison. Numerical results show that the present model can accurately predict the thermal/mechanical response of laminated composite and sandwich plates. Moreover, the present model is able to accurately calculated transverse shear stresses directly from constitutive equations without any postprocessing methods.  相似文献   

12.
Bending and free vibration analysis of multilayered plates and shells by using a new accurate higher order shear deformation theory (HSDT) is presented. It is one of the most accurate HSDT available in the literature, mainly because new non-polynomial shear strain shape functions (combination of exponential and trigonometric) used in the present theory are richer than polynomial functions, and free surface boundary conditions can be guaranteed a priori. The present HSDT is able to reproduce Touratier’s HSDT as special case. The governing equations and boundary conditions are derived by employing the principle of virtual work. These equations are then solved via Navier-type, closed form solutions. Bending and dynamic results are presented for cylindrical and spherical shells and plates for simply supported boundary conditions. Panels are subjected to sinusoidal, distributed and point loads. Results are provided for thick to thin as well as shallow and deep shells. The present results are compared with the exact three-dimensional elasticity theory and with several other well-known HSDT theories. The present HSDT is found to be more precise than other several existing ones for analyzing the bending and free vibration of isotropic and multilayered composite shell and plate structures.  相似文献   

13.
This paper introduces a generalized 5 degrees of freedom (DOF) higher-order shear deformation theory (HSDT) to study the bending and free vibration of plates and shells, which may be used to create other HSDTs. It also introduces a new HSDT for shells that is more accurate than many available HSDTs despite having the same 5DOF, and which is also able to reproduce the well-known Soldatos’ HSDT as special case. The governing equations and boundary conditions of the generalized formulation are derived by employing the principle of virtual work. These equations are solved via Navier-type closed-form solutions. Static and dynamic results are presented for plates and cylindrical and spherical shells with simply supported boundary conditions. Panels are subjected to sinusoidal, distributed and point loads. Results are provided for thick to thin as well as shallow and deep shells. Results from the new and well-known HSDTs introduced and reproduced based on the present generalized 5DOF HSDT are compared with the exact three-dimensional elasticity solution. The present new HSDT for plates and shells is found to be more accurate than the well-known HSDTs developed by other authors, for analyzing the static and free vibration of isotropic and multilayered composite plates and shells.  相似文献   

14.
The objective of the paper is to analyze the free vibration of laminated composite beams using a refined higher-order shear deformation theory. The influences of parabolic transverse shear strain, transverse normal strain and Poisson effect are included in the present formulation. The governing differential equations of motion for coupled vibrations of laminated beams are derived using the Hamilton’s principle. In the case of simply supported composite beams, the closed-form solutions for the natural frequency of free harmonic vibration are obtained. The correctness and accuracy of the present theory are validated by comparing the present results with those previously published in the literature and ANSYS solutions.  相似文献   

15.
In the present study, a sinusoidal shear and normal deformation theory taking into account effects of transverse shear as well as transverse normal is used to develop the analytical solution for the bidirectional bending analysis of isotropic, transversely isotropic, laminated composite and sandwich rectangular plates. The theory accounts for adequate distribution of the transverse shear strains through the plate thickness and traction free boundary conditions on the plate boundary surface, thus a shear correction factor is not required. The displacement field uses sinusoidal function in terms of thickness coordinate to include the effect of transverse shear and the cosine function in terms of thickness coordinate is used in transverse displacement to include the effect of transverse normal. The kinematics of the present theory is much richer than those of the other higher order shear deformation theories, because if the trigonometric term is expanded in power series, the kinematics of higher order theories are implicitly taken into account to good deal of extent. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The Navier solution for simply supported laminated composite plates has been developed. Results obtained for displacements and stresses of simply supported rectangular plates are compared with those of other refined theories and exact elasticity solution wherever applicable.  相似文献   

16.
《Composite Structures》1988,10(3):211-229
Assuming a constant in-plane rotation tensor through the thickness in Reddy's higher-order plate theory it is shown that a simpler higher-order theory can be obtained with the reduction of one variable without significant loss in the accuracy. This simple higher-order shear deformable plate theory is then used for predicting the natural frequencies of simply-supported isotropic, orthotropic and laminated composite plates. The results obtained for isotropic, orthotropic and laminated plates compare favourably with Reddy's results and other 3D results.  相似文献   

17.
This paper proposes a new higher-order shear deformation theory for buckling and free vibration analysis of isotropic and functionally graded (FG) sandwich beams. The present theory accounts a new hyperbolic distribution of transverse shear stress and satisfies the traction free boundary conditions. Equations of motion are derived from Lagrange's equations. Analytical solutions are presented for the isotropic and FG sandwich beams with various boundary conditions. Numerical results for natural frequencies and critical buckling loads obtained using the present theory are compared with those obtained using the higher and first-order shear deformation beam theories. Effects of the boundary conditions, power-law index, span-to-depth ratio and skin-core-skin thickness ratios on the critical buckling loads and natural frequencies of the FG beams are discussed.  相似文献   

18.
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddys third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu–Hill equations from which the boundary points on the unstable regions are determined by Bolotins method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.This work was fully supported by grants from the Australian Research Council (A00104534) and from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 1024/01 E). The authors are grateful for this financial support.  相似文献   

19.
A nonlinear higher-order theory for laminated composite plates and shells with an arbitrary number and sequence of layers is presented. The theory takes into account both transverse shear and normal deformation and considers the elasto-plastic behaviour of the composite materials. The results presented illustrate first the importance of modelling the nonlinear behaviour of the material especially at high levels of loading, and secondly the importance of modelling both transverse shear and normal compression.  相似文献   

20.
《Composites Part B》2013,45(1):657-674
In this paper the authors derive a higher-order shear deformation theory for modeling functionally graded plates accounting for extensibility in the thickness direction.The explicit governing equations and boundary conditions are obtained using the principle of virtual displacements under Carrera’s Unified Formulation. The static and eigenproblems are solved by collocation with radial basis functions.The efficiency of the present approach is assessed with numerical results including deflection, stresses, free vibration, and buckling of functionally graded isotropic plates and functionally graded sandwich plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号