首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The geometrically nonlinear forced vibrations of laminated circular cylindrical shells are studied by using the Amabili–Reddy higher-order shear deformation theory. An energy approach based on Lagrange equations, retaining modal damping, is used in order to obtain the equations of motion. An harmonic point excitation is applied in radial direction and simply supported boundary conditions are assumed. The equations of motion are studied by using the pseudo-arclength continuation method and bifurcation analysis. A one-to-one internal resonance is always present for a complete circular cylindrical shell, giving rise to pitchfork bifurcations of the nonlinear response with appearance of a second branch with travelling wave response and quasi-periodic vibrations. The numerical results obtained by using the Amabili–Reddy shell theory are compared to those obtained by using an higher-order shear deformation theory retaining only nonlinear term of von Kármán type and the Novozhilov classical shell theory.  相似文献   

2.
Skewed modes in geometrically nonlinear forced vibrations of angle-ply laminated circular cylindrical shells are investigated in the present study by using the Amabili–Reddy higher-order shear deformation theory. An harmonic force excitation is applied in radial direction and simply supported boundary conditions are assumed. The equations of motion are obtained by using an energy approach based on Lagrange equations that retains dissipation. Numerical results are obtained by using the pseudo-arclength continuation method and bifurcation analysis.  相似文献   

3.
Transient response of simply-supported circular cylindrical shells is investigated using a higher-order shear deformation theory (HSDT). The theory is a modification of the Sanders' shell theory and accounts for parabolic distribution of the transverse shear strains through thickness of the shell and tangential stress-free boundary conditions on the bounding surfaces of the shell. The results obtained using the classical shell theory (CST) and the first-order shear deformation theory (FSDT) are compared with those obtained using the higher-order theory. The state-space approach is used to develop the analytical solutions to the equations of motion of the three theories.  相似文献   

4.
H. Rouhi  R. Ansari  M. Darvizeh 《Acta Mechanica》2016,227(6):1767-1781
Surface stresses can significantly affect the mechanical behavior of structures when they are scaled down to deep submicron dimensions. The Gurtin–Murdoch surface elasticity theory has the capability to capture the size-dependent behavior of nanostructures due to the surface stress effect in a continuum manner. The present work is concerned with the application of Gurtin–Murdoch theory to the nonlinear free vibration analysis of circular cylindrical nanoshells with considering surface stress and shear deformation effects. The nonlinear governing equations of motion together with the corresponding boundary conditions are firstly derived using Hamilton’s principle, the first-order shear deformation shell theory and von Kármán’s assumption. An analytical approach is then presented to solve the nonlinear free vibration problem. Selected numerical results are given to illustrate the effects of surface energy on the nonlinear free vibration behavior of shear deformable nanoshells with different material and geometrical parameters. It is shown that there is a large difference between the results of Gurtin–Murdoch theory and those of its classical counterpart for very thin nanoshells.  相似文献   

5.
Geometrically nonlinear vibrations of functionally graded (FG) doubly curved shells subjected to thermal variations and harmonic excitation are investigated via multi-modal energy approach. Two different nonlinear higher-order shear deformation theories are considered and it is assumed that the shell is simply supported with movable edges. Using Lagrange equations of motion, the energy functional is reduced to a system of infinite nonlinear ordinary differential equations with quadratic and cubic nonlinearities which is truncated based on solution convergence. A pseudo-arclength continuation and collocation scheme is employed to obtain numerical solutions for shells subjected to static and harmonic loads. The effects of FGM power law index, thickness ratio and temperature variations on the frequency–amplitude nonlinear response are fully discussed and it is revealed that, for relatively thick and deep shells, the Amabili–Reddy theory which retains all the nonlinear terms in the in-plane displacements gives different and more accurate results.  相似文献   

6.
An analysis on the nonlinear dynamics of a clamped-clamped FGM circular cylindrical shell subjected to an external excitation and uniform temperature change is presented in this paper. Material properties of the constituents are assumed to be temperature-independent and the effective properties of FGM cylindrical shell are graded in thickness direction according to a simple power law function in terms of the volume fractions. Based on the first-order shear deformation shell theory and von Karman type nonlinear strain-displacement relationship, the nonlinear governing equations of motion are derived by using Hamilton’s principle. Galerkin’s method is then utilized to discretize the governing partial equations to a two-degree-of-freedom nonlinear system including the quadratic and cubic nonlinear terms under combined external excitations. Numerical results including the bifurcations, waveform, phase plots and Poincare maps are presented for clamped-clamped FGM cylindrical shells showing the influences of material gradient index, the thickness and the external loading on the nonlinear dynamics.  相似文献   

7.
A generalized mixed theory for bending analysis of axisymmetric shear deformable laminated circular cylindrical shells is presented. The classical, first-order and higher-order shell theories have been used in the analysis. The Maupertuis–Lagrange (M–L) mixed variational formula is utilized to formulate the governing equations of circular cylindrical shells laminated by orthotropic layers. Analytical solutions are presented for symmetric and antisymmetric laminated circular cylindrical shells under sinusoidal loads and subjected to arbitrary boundary conditions. Numerical results of the higher-order theory for deflections and stresses of cross-ply laminated circular cylindrical shells are compared with those obtained by means of the classical and first-order shell theories. The effects, due to shear deformation, lamination schemes, loadings ratio, boundary conditions and orthotropy ratio on the deflections and stresses are investigated.  相似文献   

8.
A set of nonlinear two-dimensional equations for thin electroelastic shells in vibrations with moderately large shear deformation in the tangent plane are obtained from the three-dimensional equations of nonlinear electroelasticity. As an example for application, the equations are used to study nonlinear torsional vibration of a circular cylindrical piezoelectric shell. It is shown that torsion is nonlinearly coupled to axial extension and circumferential extension. The results of this paper emphasize the need for further study of mode coupling induced by nonlinearity.  相似文献   

9.
Size-dependent dynamic stability response of higher-order shear deformable cylindrical microshells made of functionally graded materials (FGMs) and subjected to simply supported end supports is investigated. Material properties of the microshells vary in the thickness direction according to the Mori–Tanaka scheme. The modified couple stress elasticity theory in conjunction with the classical higher-order shear deformation shell theory is utilized to develop non-classical shell model containing additional internal length scale parameter to interpret size effect. The differential equations of motion and boundary conditions are derived by using Hamilton’s principle. The governing equations are then written in the form of Mathieu–Hill equations and then Bolotin’s method is employed to determine the instability regions. Selected numerical results are given to indicate the influences of internal length scale parameter, material property gradient index, static load factor and axial wave number on the dynamic stability behavior of FGM microshells. It is found that the width of the instability region for an FGM microshell increases with the decrease of the value of dimensionless length scale parameter. Moreover, it is shown that the classical shell model has an overestimated prediction for the width of instability region corresponding to the FGM microshells especially with lower values of material property gradient index.  相似文献   

10.
层壳考虑横向剪切效应的自由振动分析   总被引:2,自引:0,他引:2       下载免费PDF全文
本文采用一个分层的剪切变形理论分析层壳的自由振动。假定层壳各层横向剪切应变彼此线性相关,从而未知函数个数与一阶剪切变形理论相同,但控制微分方程的阶数为十二阶,且不含剪切修正因子。文中计算了一个短圆柱壳与两种扁壳的自由振动频率,数值结果与经典层合理论、一阶剪切变形理论及其他剪切变形理论的计算结果进行了比较。   相似文献   

11.
《Composites Science and Technology》2004,64(10-11):1419-1435
This paper deals with hygrothermal effects on the nonlinear vibration and dynamic response of shear deformable laminated plates. The temperature field considered is assumed to be a uniform distribution over the plate surface and through the plate thickness. The material properties of the composite are affected by the variation of temperature and moisture, and based on a micro-mechanical model. The formulations are based on higher-order shear deformation plate theory and general von Kármán-type equation of motion, which includes hygrothermal effects. The equations of motion are solved by an improved perturbation technique to determine nonlinear frequencies and dynamic responses of shear deformable antisymmetric angle-ply and unsymmetric cross-ply laminated plates. The numerical illustrations concern the nonlinear vibration and dynamic response of the shear deformable laminated plates under different sets of hygrothermal environmental conditions. Effects of temperature rise, the degree of moisture concentration, and fiber volume fraction on natural frequencies, nonlinear to linear frequency ratios and dynamic responses are studied.  相似文献   

12.
Within the framework of the three-dimensional (3D) nonlinear elasticity, a refined asymptotic theory is developed for the nonlinear analysis of laminated circular cylindrical shells. In the present formulation, the basic equations including the nonlinear relations between the finite strains (Green strains) and displacements, the nonlinear equilibrium equations in terms of the Kirchhoff stress components and the generalized Hooke's law for a monoclinic elastic material are considered. After using proper nondimensionalization, asymptotic expansion, successive integration and then bringing the effects of transverse shear deformation into the leading-order level, we obtain recursive sets of the governing equations for various orders. It is shown that the von Karman-type first-order shear deformation theory (FSDT) is derived as a first-order approximation to the 3D nonlinear theory. The differential operators in the linear terms of governing equations for the leading order problem remain identical to those for the higher-order problems. The nonlinear terms related to the unknowns of the current order appear in a regular pattern and the other nonhomogeneous terms can be calculated by the lower-order solutions. It is also illustrated that the nonlinear analysis of laminated circular cylindrical shells can be made in a hierarchic and consistent way.  相似文献   

13.
In this paper, the response of a circular cylindrical thin shell made of the functionally graded material based on the generalized theory of thermoelasticity is obtained. The governing equations of the generalized theory of thermoelasticity and the energy equations are simultaneously solved for a functionally graded axisymmetric cylindrical shell subjected to thermal shock load. Thermoelasticity with second sound effect in cylindrical shells based on the Lord–Shulman model is compared with the Green–Lindsay model. A second‐order shear deformation shell theory, that accounts for the transverse shear strains and rotations, is considered. Including the thermo‐mechanical coupling and rotary inertia, a Galerkin finite element formulation in space domain and the Laplace transform in time domain is used to formulate the problem. The inverse Laplace transform is obtained using a numerical algorithm. The shell is graded through the thickness assuming a volume fraction of metal and ceramic, using a power law distribution. The effects of temperature field for linear and non‐linear distributions across the shell thickness are examined. The results are validated with the known data in the literature. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents an efficient and simple higher-order theory for analyzing free vibration of cylindrical beams with circular cross section where the rotary inertia and shear deformation are taken into account simultaneously. Unlike the Timoshenko theory of beams, the present method does not require a shear correction factor. Similar to the Levinson theory for rectangular beams, this new model is a higher-order theory for beams with circular cross section. For transverse flexure of such cylindrical beams, based on the traction-free condition at the circumferential surface of the cylinder, two coupled governing equations for the deflection and rotation angle are first derived and then combined to yield a single governing equation. In the case of no warping of the cross section, our results are exact. A comparison is made of the natural frequencies with those using the Timoshenko and Euler–Bernoulli theories of beams and the finite element method. Our results are useful for precisely understanding the mechanical behavior and engineering design of circular cylindrical beams.  相似文献   

15.
The aim of the present study is to investigate the nonlinear motion characteristics of a shear deformable microplate based on the modified couple stress theory. The microplate is modeled via the third-order shear deformation theory retaining in-plane displacements and inertia. Using the Lagrange equations together with an assumed-mode method, five sets of second-order nonlinear ordinary differential equations of motion with coupled terms are obtained. These five sets of equations (two for the in-plane motions, one for the out-of-plane motion, and two for rotations) are transformed into ten sets of first-order nonlinear ordinary differential equations. These resultant equations are then solved by means of a direct time integration technique and the pseudo-arclength continuation method in order to analyze the nonlinear response of the system. Apart from the nonlinear analysis, the linear natural frequencies of the system are obtained using an eigenvalue analysis. Results are shown through frequency–response and force–response curves. Points of interest in the parameter space in the form of time histories, phase-plane portraits, and fast Fourier transforms are also highlighted. Moreover, a comparison is made between the motion characteristics of the system based on the modified couple stress and classical continuum theories.  相似文献   

16.
热环境下功能梯度材料板的自由振动和动力响应   总被引:9,自引:0,他引:9  
黄小林  沈惠申 《工程力学》2005,22(3):224-227,81
基于Reddy高阶剪切变形理论和广义Kármán型方程,用双重Fourier级数展开法求得了四边简支功能梯度材料板的自由振动及动力响应的解析解,分析中考虑了热传导以及组分材料热物参数对温度变化的依赖性,讨论了材料组分指数和热环境对固有频率及动力响应的影响。  相似文献   

17.
The higher-order shear deformation theory of laminated orthotropic elastic shells of Reddy accounts for parabolic distribution of the transverse shear strains through the thickness of the shell. The Reddy shell theory allows the fulfillment of homogeneous conditions (zero values) at the top and bottom surfaces of the shell. This paper deals with a meshless solution of the Reddy higher order shell theory in static and free vibration analysis. The meshless technique is based on the asymmetric global multiquadric radial basis function method proposed by Kansa. This paper demonstrates that this truly meshless method is very successful in the static and free vibration analysis of laminated composite shells.  相似文献   

18.
The free vibration characteristics of FGM cylindrical shells partially resting on elastic foundation with an oblique edge are investigated by an analytical method. The cylindrical shell is partially surrounded by an elastic foundation which is represented by the Pasternak model. An edge of an elastic foundation lies in a plane that is oblique at an angle with the shell axis. The motion of shell is represented based on the first order shear deformation theory (FSDT) to account for rotary inertia and transverse shear strains. The functionally graded cylindrical shell is composed of stainless steel and silicon nitride. Material properties vary continuously through the thickness according to a four-parameter power law distribution in terms of volume fraction of the constituents. The equation of motion for eigenvalue problem is obtained using Rayleigh–Ritz method and variational approach. To validate the present method, the numerical example is presented and compared with the available existing results.  相似文献   

19.
A two-dimensional (2D) higher-order deformation theory is presented for vibration and buckling problems of circular cylindrical shells made of functionally graded materials (FGMs). The modulus of elasticity of functionally graded (FG) shells is assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. By using the method of power series expansion of continuous displacement components, a set of fundamental governing equations which can take into account the effects of both transverse shear and normal deformations, and rotatory inertia is derived through Hamilton’s principle. Several sets of truncated Mth order approximate theories are applied to solve the eigenvalue problems of simply supported FG circular cylindrical shells. In order to assure the accuracy of the present theory, convergence properties of the fundamental natural frequency for the fundamental mode r=s=1 are examined in detail. A comparison of the present natural frequencies of isotropic and FG shells is also made with previously published results. Critical buckling stresses of simply supported FG circular cylindrical shells subjected to axial stress are also obtained and a relation between the buckling stress and natural frequency is presented. The internal and external works are calculated and compared to prove the numerical accuracy of solutions. Modal transverse shear and normal stresses are calculated by integrating the three-dimensional (3D) equations of motion in the thickness direction satisfying the stress boundary conditions at the outer and inner surfaces. The 2D higher-order deformation theory has an advantage in the analysis of vibration and buckling problems of FG circular cylindrical shells.  相似文献   

20.
M. H. Zhao  W. Zhang 《Acta Mechanica》2014,225(7):1985-2004
This paper presents the analysis of the nonlinear dynamics for a composite laminated cantilever rectangular plate subjected to the supersonic gas flows and the in-plane excitations. The aerodynamic pressure is modeled by using the third-order piston theory. Based on Reddy’s third-order plate theory and the von Kármán-type equation for the geometric nonlinearity, the nonlinear partial differential equations of motion for the composite laminated cantilever rectangular plate under combined aerodynamic pressure and in-plane excitation are derived by using Hamilton’s principle. The Galerkin’s approach is used to transform the nonlinear partial differential equations of motion for the composite laminated cantilever rectangular plate to a two-degree-of-freedom nonlinear system under combined external and parametric excitations. The method of multiple scales is employed to obtain the four-dimensional averaged equation of the non-automatic nonlinear system. The case of 1:2 internal resonance and primary parametric resonance is taken into account. A numerical method is utilized to study the bifurcations and chaotic dynamics of the composite laminated cantilever rectangular plate. The frequency–response curves, bifurcation diagram, phase portrait and frequency spectra are obtained to analyze the nonlinear dynamic behavior of the composite laminated cantilever rectangular plate, which includes the periodic and chaotic motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号