首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The d.c. conductivity, σ, and the oxygen gas-sensing behaviour of V2O5–SnO–TeO2 glass prepared by press-quenching were studied in argon and oxygen gas atmospheres at temperatures ranging from 303–473 K. The glass of 50V2O5·20SnO·30TeO2 (mol %) was n-type semiconducting. The high-temperature conductivity was lower in oxygen and higher in argon than that in air. This was explained by the V4+ ions in the glass being oxidized by oxygen which had diffused into the glass, resulting in an increase in V5+ with time. The experimental relationship between σ and oxygen partial pressure, P O2, agreed quantitatively with the theoretical relation σ ∝ P O2 -1/4 . Changes in conductivity by switching the atmospheres between oxygen and argon gases were found to be reproducible. From the data of these dynamic changes, the oxygen gas sensitivity, S, at 473 K was obtained to be 1.3 in oxygen atmosphere. The dynamic changes could be quantitatively explained by an oxygen diffusion model. Throughout these discussions, the present tellurite glass was found to possess a potential applicability as an oxygen gas sensor. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
The d.c. conductivity (σ) of (a) glasses prepared by the press-quenching method and (b) glass-ceramics (crystallized glass) produced by post-heat treatment was investigated in the system Sb2O3–CaO–V2O5 and their conduction mechanism was studied. The glasses were n-type semiconductors with σ = 2.6 × 10-6 ∼ 2.8 × 10-5 S cm-1 at 333 K for varying glass compositions. The conduction was attributed to small polaron hopping in the adiabatic regime. The estimated carrier density was 1.7 ∼ 3.8 × 1021 cm-3 for V2O5 = 70 ∼ 80 mol% and the mobility was 3.5 × 10-9 to 6.9 × 10-8 cm2 V-1 s-1. Crystallization raised the conductivity by a factor of 103. The crystalline product in the glass-ceramics was Ca0.17V2O5. The glass-ceramics were n-type semiconductors, and the conduction was interpreted by a superposition of the small polaron hopping in the crystalline and glassy phases. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

3.
BaTiO3-doped (5–40 wt %) 90V2O5-10Bi2O3 (VB) glasses have been prepared by a quick quenching technique. The d.c. electrical conductivities, d.c., of these glasses have been reported in the temperature range 80–450 K. The electrical conductivity of these glasses, which arises due to the presence of V4+ and V5+ ions, has been analysed in the light of the small-polaron hopping conduction mechanism. The adiabatic hopping conduction valid for the undoped VB glasses (with 80–95 mol % V2O5), in the high-temperature region, is changed to a non-adiabatic hopping mechanism in the BaTiO3-doped VB glasses. At lower temperatures, however, a variable range hopping (VRH) mechanism dominates the conduction mechanism in both the glass systems. Such a change-over from adiabatic to non-adiabatic conduction mechanism is a new feature in transition metal oxide glasses. Various parameters, such as density of states at the Fermi level N(EF), electron wave-function decay constant, , polaron radius, r p, and its effective mass, m p * , etc., have been obtained for all the glass samples from a critical analysis of the electrical conductivity data satisfying the theory of polaron hopping conduction.  相似文献   

4.
Glasses from xFe2O3 · (100 − x)[P2O5 · TeO2] system, with 0 ≤ x ≤ 50 mol%, were investigated by X-ray diffraction, FT-IR and EPR spectroscopies. The XRD patterns show a vitreous state of studied samples for x ≤ 35 mol% Fe2O3. The FT-IR spectrum of the P2O5 · TeO2 glass matrix reveals a structure formed from PO4, TeO4 and TeO3 units. The addition and the increasing of Fe2O3 content modify progressively the structure of the glass matrix. The local structure in the investigated glasses was revealed by means of EPR using Fe3+ (3d5; 6S5/2) ions as paramagnetic probes. The EPR spectra present two resonance absorption lines characteristic to Fe3+ ions centred at geff ≈ 2.0, for 0.5 ≤ x ≤ 35 mol% and geff ≈ 4.3, for 0.5 ≤ x ≤ 5 mol%. The variation of the EPR parameters, the intensity and line-width of these absorption lines, with iron ions composition has been followed.  相似文献   

5.
Semiconducting glasses of the V2O5–NiO–TeO2 system were prepared by the press-quenching method and their d.c. conductivities in the temperature range 300–450 K were measured. The d.c. conductivities at 395 K for the present glasses were determined to be 10–7 to 10–1 S m–1, indicating that the conductivity increased with increasing V2O5 concentration. A glass of composition 67.5V2O5–2.5NiO–30TeO2 (mol %) having a conductivity of 2.47×10–2 S m–1 at a temperature of 395 K was found to be the most conductive glass among the vanadium-tellurite glasses. From the conductivity–temperature relation, it was found that a small polaron hopping model was applicable at the temperature above D/2 (D: the Debye temperature); the electrical conduction at T>D/2 was due to adiabatic small polaron hopping of electrons between vanadium ions. The polaron bandwidth ranged from 0.06 to 0.21 eV. The hopping carrier mobility varied from 1.1×10–7 to 5.48×10–5 cm2 V–1 s–1 at 400 K. The carrier density is evaluated to be 1.85×1019–5.50×1019 cm–3. The conductivity of the present glasses was primarily determined by hopping carrier mobility. In the low-temperature (below D/2) regime, however, both Mott's variable-range hopping and Greaves intermediate range hopping models are found to be applicable.  相似文献   

6.
In order to further elucidate the local structure of ternary xGd2O3(100 − x)[0.7TeO2 · 0.3V2O5] glasses with x = 0, 5, 10, 15, 20 mol%, FTIR spectroscopy, XRD diffraction and density measurement were performed. FTIR and density data show that by increasing the gadolinium ions content of the samples the excess of oxygen may be accommodated by the inter-conversion of some [VO4] into [VO5] structural units and of [TeO3] into [TeO4] units. The composition of the heat-treated glasses was found to consist mainly of the Te2V2O9 crystalline phase. Varying x between 15 and 20 mol% Gd2O3 produces structural modification having as result an increase of the glass network polymerization degree. Accordingly, the gadolinium ions play a particular role related to the improvement of the homogeneity of the glasses and in accommodating the glass network with the excess of oxygen.  相似文献   

7.
Glasses with composition (70 − x) B2O3·15Bi2O3·15LiF·xNb2O5 with x = 0–1.0 mol% were prepared by conventional glass-melting technique. The molar volume V m values decrease and the glass transition temperatures T g increase with increase of Nb2O5 content up to 0.2 mol%, which indicates that Nb5+ ions act as a glass former. Beyond 0.2 mol% Nb2O5 the V m increases and the T g decreases, which suggests that Nb5+ ions act as a glass modifier. The FTIR spectra suggest that Nb5+ ions are incorporated into the glass network as NbO6 octahedra, substituting BO4 groups. The temperature dependence of the dc conductivity follows the Greaves variable range hopping model below 454 K, and follows the small polaron hopping model at temperatures >454 K. σ dc, σ ac conductivity and dielectric constant (ε) decrease and activation energy for dc conduction ΔE dc which increases with increasing Nb2O5 content up to 0.2 mol%, whereas σ dc, σ ac and (ε) increase and ΔE dc decreases with increasing Nb2O5 content beyond 0.2 mol%. The impedance spectroscopy shows a single semicircle or arcs which indicate only the ionic conduction mechanism. The electric modulus formalism indicates that the conductivity relaxation is occurring at different frequencies exhibit temperature-independent dynamical process. The (FWHM) of the normalized modulus increases with increase in Nb2O5 content suggesting that the distribution of relaxation times is associated with the charge carriers Li+ or F ions in the glass network.  相似文献   

8.
The thermoelectric power of glasses in the systems V2O5-Sb2O3-TeO2 and V2O5-Bi2O3-TeO2 was measured at temperatures in the range 373–473 K. The glasses in both systems were found to be n-type semiconductors. The Seebeck coefficient, Q, at 473 K was determined as –192 to –151 VK–1 for V2O5-Sb2O3-TeO2 glasses, and –391 to –202 VK–1 for V2O5-Bi2O3-TeO2 glasses. For these glasses in both systems, Heikes' formula was satisfied adequately for the relationship between Q and In [C v/(1-Cv)] (C v = V4+/Vtotal, C v is the ratio of the concentration of reduced vanadium ions), and discussions confirmed small polaron hopping conduction of the glasses in both systems. Mackenzie's formula relating to Q and V5+/V4+ was also applicable to the glasses in both systems, and it was concluded that the dominant factor determining Q was C v.  相似文献   

9.
The thermoelectric power and d.c electrical conductivity of x V2O5⋅40CaO⋅(60−x)P2O5 (10 ≤ x ≤ 30) glasses were measured. The Seebeck coefficient (Q) varied from +88 μ V K−1 to −93 μV K−1 as a function of V2O5 mol%. Glasses with 10 and 15 mol% V2O5 exhibited p-type conduction and glasses with 25 and 30 mol% V2O5 exhibited n-type conduction. The majority charge carrier reversal occurred at x = 20 mol% V2O5. The variation of Q was interpreted in terms of the variation in vanadium ion ratio (V5 +/V4 +). d.c electrical conduction in x V2O5⋅40CaO⋅(60−x)P2O5 (10 ≤ x ≤ 30) glasses was studied in the temperature range of 150 to 480 K. All the glass compositions exhibited a cross over from small polaron hopping (SPH) to variable range hopping (VRH) conduction mechanism. Mott parameter analysis of the low temperature data gave values for the density of states at Fermi level N (EF) between 1.7 × 1026 and 3.9 × 1026 m−3 eV−1 at 230 K and hopping distance for VRH (RVRH) between 3.8 × 10−9m to 3.4 × 10−9 m. The disorder energy was found to vary between 0.02 and 0.03 eV. N (EF) and RVRH exhibit an interesting composition dependence.  相似文献   

10.
The electrical properties of xFe2O3−(100 −x) Na2P2O5 glasses with x = 0, 6, 12, 18 and 24 mol% have been studied in the temperature range from 323 to 573 K. The dc conductivity was found to decrease as the iron content increases while the activation energy increases with increasing iron content in the glasses. In the high—temperature regime above θD/2 (θD is the Debye temperature), the Mott model of small polaron hopping (SPH) between nearest neighbors is consistent with the conductivity data. The electron—phonon interaction coefficient γP was very large (66.74–97.60). The electrical conduction of the glasses was confirmed to be non-adiabatic small polaron hopping. The physical parameters obtained by fitting the experimental results to these models are consistent with glass compositions.  相似文献   

11.
The glasses defined by the formula 37.5Li2O–25V2O5–37.5P2O5 mol% containing different sulfur (0, 10, 50 and 100 mol%) content were studied before and after nanocrystallization. X-ray diffraction and transmission electron micrograph of the heat treated samples indicated nanocrystals embedded in the glass matrix. The average crystallite size was found between 18 and 37 nm. Sulfur (S) behaved as a reducing agent for redox reaction during preparation of glass and affected the conductivity, i.e., the V4+–V5+ or V3+–V4+ion pairs increased with increasing S content and led to increasing conductivity of glasses. After creation of the nanocrystalline phase, S-free glass–ceramic nanocomposite exhibited improvement in electrical conductivity around three orders of magnitude than initial glass. This great improvement of electrical conductivity is related to increase in a concentration of V4+–V5+or V3+–V4+ ion pairs and also, forming of defective and well-conducting regions along the crystallite/glass interfaces. The decrease in electrical conductivity in the 50S glass–ceramic nanocomposite, which possessed the highest crystallite size, could be related to the increase of grain boundaries scattering because of the increasing crystallite size. The conduction was attributed to non-adiabatic small polaron hopping and mostly determined by hopping carrier mobility.  相似文献   

12.
Characterization of the binary V2O5-Bi2O3 glasses prepared by rapidly quenching the melt has been made from the studies of X-ray diffraction, scanning electron microscopy, infrared absorption, differential thermal analysis, electron paramagnetic resonance, chemical analysis, density and electrical properties. Stable glasses are obtained for 95 to 75 mol % V2O5 by quenching on a stainless steel substrate, while quenching on a copper substrate extends the glass formation range from 95 to 70 mol % V2O5. The V-O bond vibration in the glasses occurs at 1020 cm–1 and the V5% ion exists in six-fold coordination as in crystalline V2O5. All the glasses appear to be in single phase. The spin concentration in the glasses is found to be independent of temperature. A second heat-treatment at 255° C develops crystalline phase in the glasses. Unlike infrared absorption, electron paramagnetic resonance, density and chemical compositions, the electrical and thermal (DTA) properties are found to be slightly sensitive to the thermal history of preparation of the glasses. The high-temperature (300 to 500 K) conduction in the glasses seems to be due to adiabatic hopping of polarons. The thermopower is observed to be independent of temperature and provides evidence for small polaron formation in the glasses.  相似文献   

13.
In this paper, we have examined and analyzed the effects of systematic intercalation of the lead ions on vanadate–tellurate glass ceramics with interesting results. The structural properties of the lead–vanadate–tellurate glass ceramics of compositions xPbO·(100 − x)[6TeO2·4V2O5], x = 0 − 100 mol%, are reported for the first time. It has been shown by X-ray diffraction that single-phase homogeneous glasses with a random network structure can be obtained in this system. Among these unconventional lead–vanadate–tellurate glass ceramics, we found that network formers are good host material for lead ions and are capable to intercalate a variety of species such as Te2V2 5+O9, Pb3(V5+O4)2, Pb2V2 5+O7, and V2O5-rich amorphous phase. On the other hand, these glass ceramics contain V4+ and V5+ ions necessary for the electrical conduction. Based on these experimental results, we propose that the V4+=O bonds are created by two different mechanisms: the first of reduction of V5+ ions to V4+ ions and thus of creation of V4+=O bonds.  相似文献   

14.
The glass transition temperature was studied via differential thermal analysis of glasses in the system (100 − x)TeO2–5Bi2O3xZnO and (100 − x)TeO2–10Bi2O3xZnO where x = 15, 20, 25 in mol%. The crystallization behavior and microstructure development of the 0.7TeO2/0.1Bi2O3/0.2ZnO glass during annealing were investigated by non-isothermal differential thermal analysis (DTA), X-ray diffractometry, and transmission electron microscopy. The glass transition temperature, crystallization temperature, and the nature of crystalline phases formed were determined. From the heating rate dependence of the glass transition temperature, the glass transition activation energy was derived. From variation of DTA peak maximum temperature with heating rate, the activation energies of crystallization were calculated to be 305.8 and 197 kJ mol−1 for first and second crystallization exotherms, respectively. Moreover, synthesized crystalline Bi3.2Te0.8O6.4, Bi2Te4O11, and Zn2Te3O8 were investigated. In addition, the change in particle size with increasing annealing time was observed by high-polarized optical microscope.  相似文献   

15.
Semiconducting oxide glasses of the system (80 − x)Bi2O3–20PbO–xFe2O3, where x = 5, 10 and 15 mol.%, were prepared and investigated for dielectric properties in the frequency range 120–100 KHz and temperature range 300–550 K. Analysis of the electrical properties has been made in the light of small polaron hopping model. The parameters obtained from the fits of the experimental data to this model are reasonable and consistent with glass composition. The conduction is attributed to non-adiabatic hopping of small polaron. The ac conductivity results suggest that the correlated barrier hopping (CBH) is dominant in ac conductivity.  相似文献   

16.
The first measurements of the anomalous variation of d.c. magnetic susceptibility of the (50 – x) P2O5-xM-50V2O5 (M = Bi2O3 and Sb2O3, and x=0 to 40 mol% M) oxide glasses around 20 to 30 mol% M are reported here. Similar anomalous behaviour was also observed in the electrical and other physical properties of the glasses (reported in the previous paper). Like electrical and dielectric properties, this anomaly in the magnetic properties was also found to be mostly associated with the anomalous variation of the V4+/V5+ ratio (around 20 to 30 mol% M) with the concentration of M. From the temperature (80 to 300 K)-dependent magnetic susceptibility data the V4+ ion concentrations have also been calculated, which agree quite well with those obtained from chemical analysis, and the small discrepancy is attributed to the presence of V3+ and/or V2+ ions in the glass.  相似文献   

17.
Characterizations of (50 – x) P2O5-x M-50V2O5 (M = Bi2O3, Sb2O3, and GeO2 and x=0 to 45 mol% M) and P2O5-Bi2O3 semiconducting oxide glasses have been made from studies of electrical conductivities (both a.c. and d.c.) in the temperature range 77 to 400 K. All these glasses showed some interesting non-linear variation of d.c. and a.c. conductivity, together with other properties for particular values of M (between 20 and 30 mol% M). Because the non-vanadate (1–x) P2O5-x Bi2O3 glasses also showed similar conductivity anomaly (minimum) around 25 mol% Bi2O3 with a corresponding maximum in the activation energy (W), it is concluded (in contradiction to earlier suggestions) that not only the ratio (= V5+/V4+) but also the network-former ions in the vanadate glasses make a substantial contribution to the anomalous concentration variation of the physical properties of these glasses. The electrical conduction in these glasses is found to be mainly due to hopping of polarons in the adiabatic approximation. At low temperature, the d.c. conductivity obeys Mott's T –1/4 behaviour. The a.c. conductivity obeying the general s law (exponent s lying between 0.85 and 0.98) supports the theory based on the hopping over the barrier model.  相似文献   

18.
Selected glasses of Fe2O3–PbO2–TeO2 system have been transformed into nanomaterials by annealing at a temperature close to the crystallization temperature (Tc). The effects of the annealing of the present samples on the structural and electrical properties were studied by transmission electron micrograph (TEM), X-ray diffraction (XRD), differential scanning calorimeter, density (d) and dc conductivity (σ). TEM and XRD of glass–ceramic naocrystals indicated nanocrystals embedded in the glassy matrix with average particle size of 20–35 nm. The glass–ceramic naocrystals obtained by annealing at Tc exhibit improvement of electrical conductivity up to four orders of magnitude than the starting glasses. This considerable improvement of electrical conductivity after nanocrystallization is attributed to formation of extensive and dense network of electronic conduction paths which are situated between Fe2O3 nanocrystals and on their surface. The conduction is attributed to non-adiabatic hopping of small polaron.  相似文献   

19.
The degradation behaviour of phosphate glass with nominal composition, 40Na2O-10BaO-xB2O3-(50-x)P2O5, where 0 ≤ x ≤ 20 mol%, was studied in water, HCl and NaOH solutions at room temperature to 60°C for different periods extending up to 300 h. These glasses were synthesized by conventional melt-quench technique. Dissolution rates were found to increase with B2O3 content in the glass. The dissolution rates for the glass having 10 mol% B2O3 were found to be 0·002 g/cm2 and 0·015 g/cm2 in distilled water and 5% NaOH solution, respectively, at room temperature after 225 h of total immersion period, whereas it increased considerably to 0·32 g/cm2 in 5% NaOH at 60°C after 225 h. However, glass samples with x = 15 and 20 mol% B2O3 were dissolved in 5% HCl solution after 5 h immersion. The degradation behaviour has been correlated with the structural features present in the glass. The optical microscopy of the corroded surface revealed that the corrosion mechanism were different in acid and alkali media.  相似文献   

20.
Electron paramagnetic resonance in glasses of compositions (P2O5)100–x-(CuO)x and (P2O5)50-(TeO2)50–x-(CuO)x where x varied from 20 to 40 mol% has been investigated. The distribution of the copper between the two main valency states is determined from measurements of e.s.r. arising from the Cu2+ centres. The study of e.s.r. enables the distribution of copper in the glasses between the different valency states to be determined and thus indirectly provides evidence for hopping conduction in the glasses. From the results of e.s.r. and the chemical analysis of the samples it is found that the reduced valency ratioC, i.e. the ratio of the concentration of Cu+ ions to that of total copper in the glass, increases with increasing CuO content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号