首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
姚宇  张秋菊  陈宵燕  吕青  焦露 《焊接学报》2023,35(5):122-128
针对机器人在空间曲面焊接过程中需要保持焊接速度和焊炬位姿恒定的工艺要求,提出了一种适用于复杂空间曲面焊接机器人的运动规划方法,该方法采用NURBS曲线对三维点云描述的空间轨迹进行光顺逼近,建立机器人配合变位机组成的多自由度焊接系统运动学模型并进行逆运动学求解. 开发了一套完整的复杂空间曲面焊接机器人自动编程系统. 以翻领成型器为例进行了复杂空间曲面焊接机器人的自动编程及焊接试验. 结果表明,文中提出的复杂空间曲面焊接机器人运动规划方法和自动编程系统能够顺利完成焊接任务,且运动平稳,具有良好的焊接轨迹精度.  相似文献   

2.
为了快速响应市场变化和客户需求,以加工任务的规划与机床资源的配置为依据,提出了一种可重构数控相贯线切割机床。该机床及其配套系统已投入企业实际产品生产,结果表明,可重构数控相贯线切割机床提供的功能和模块符合实际生产需要。  相似文献   

3.
A high efficiency electrochemical machining method of blisk channels   总被引:1,自引:0,他引:1  
Z.Y. Xu  Q. XuD. Zhu  T. Gong 《CIRP Annals》2013,62(1):187-190
This paper presents an electrochemical machining method in which three stainless steel tubes as cathode tools move towards workpiece parts with space trajectories and electrolyte is ejected from the outlets of the tool tube walls to the workpiece to electrochemically produce three blisk channels simultaneously. The shape and structures of cathode tool tubes are optimized numerically and experimentally for distributing the electrolyte flow more uniformly. A special experimental system with synchronous motion of three tool tubes has been developed. Experimental results indicate that three channels can be produced at one time with good quality and high efficiency.  相似文献   

4.
Parts and cutting tools with large structural flexibility experience both forced and chatter vibrations during machining, resulting in poor surface finish or damage to the machine. This paper presents the design principles of a novel 3 degrees of freedom linear magnetic actuator which increases the damping and static stiffness of flexible structures during machining. The proposed actuator can deliver 248 N force in two radial (x, y) directions and 34 N×m (torque) in torsional (θ) direction up to 850 Hz. The force and torque reduces to 107 N and 14.5 N×m at 2000 Hz, hence it can actively damp a wide range of structural modes. The magnetic force is linearized with respect to the input current using magnetic configuration design strategy. Loop shaping controllers are designed for active damping of boring bar vibrations. The static and dynamic stiffnesses of the boring bar were considerably increased with the designed actuator, leading to a significant increase in chatter-free material removal rates during cutting tests.  相似文献   

5.
In the optimization of deep hole boring processes, machining condition monitoring (MCM) plays an important role for efficient tool change policies, product quality control and lower tool costs. This paper proposes a novel approach to the MCM of deep hole boring on the basis of the pseudo non-dyadic second generation wavelet transform (PNSGWT). This approach is developed via constructing a valuable indicator, i.e., the wavelet energy ratio around the natural frequency of boring bar. Self-excited vibration occurs at the frequency of the most dominant mode of the machine tool structure. Via modeling dynamic cutting process and performing its simulation analysis during deep hole boring, it is found that the vibration amplitudes at the nature frequency of the machine tool rise with the tool wear. The PNSGWT that has relative adjustable dyadic time-frequency partition grids, good time-frequency localizability and exact shift-invariance is used to extract the wavelet energy in the specified frequency band. Accordingly, the MCM of deep hole boring can be implemented by means of normalizing the wavelet energy. Finally, a field experiment on deep hole boring machine tool is conducted, and the result shows that the proposed method is effective in the process of monitoring tool wear and surface finish quality for deep hole boring.  相似文献   

6.
A new method for monitoring micro-electric discharge machining processes   总被引:2,自引:2,他引:0  
Micro-electric discharge machining (μ-EDM) is a very complex phenomenon in terms of its material removal characteristics since it is affected by many complications such as adhesion, short-circuiting and cavitations. This paper presents a new method for monitoring μ-EDM processes by counting discharge pulses and it presents a fundamental study of a prognosis approach for calculating the total energy of discharge pulses. For different machining types (shape-up and flat-head) and machining conditions (mandrel rotation and tool electrode vibration), the results obtained using this new monitoring method with the prognosis approach show good agreement between the discharge pulses number and the total energy of discharge pulses to the material removal and tool electrode wear characteristic in μ-EDM processes. On applying tool electrode vibration, the machining time becomes shorter, because it removes adhesion. The effect of tool electrode vibration in order to remove adhesion can be monitored with good results. In order to achieve high accuracy, the tool wear compensation factor has been successfully calculated, since the amount of tool electrode wear is different in each machining type and condition. Consequently, a deeper understanding of the μ-EDM process has been achieved.  相似文献   

7.
A method of tool path compensation for repeated machining process   总被引:4,自引:0,他引:4  
This paper proposes a software method to compensate for the contour error in repeated machining process. In the proposed method, the profile of the first machined part is measured by a coordinate measuring machine. Based on the measured data, the tool path is modified by a compensation algorithm, and then, is represented by a series of linear segments. Finally, the compensated tool path is fed to the CNC machine tool for the machining of subsequent parts. Mathematical analysis and experimental evaluation are presented in this paper.  相似文献   

8.
An optimum experimental design to determine the coefficients of the Extended Taylor's Equation in machining is proposed. The technique is based on the minimisation of the ratio between maximum and minimum singular values of the matrix of sensitivity of the tool life related to the machining parameter variations. This procedure generates the best set of cutting conditions to be used in tool life tests which results in a fast convergence of the coefficients and their confidence intervals. This technique was compared to the commonly used fractional factorial design when face milling AISI 1045 steel with cemented carbide cutting tools. The results showed a considerable reduction in the number of tests required to obtain a reliable equation when the optimum experimental procedure was used when compared to the factorial design.  相似文献   

9.
A new method for the identification of stability lobes in machining   总被引:1,自引:0,他引:1  
This paper introduces a new method for identifying the stability lobes in milling. The method depends on ramping the spindle speed while monitoring the behaviour of a chatter indicator. Based on the pattern of this indicator, the stability lobes are located accurately. The lobes are identified on-line without stopping the machine. It is not necessary to calculate the frequency spectrum of any vibration signal. The method was tested successfully in immersion down-milling and was shown to be applicable to slotting. Experimental results showed that the frequency characteristics of the stability lobes identified using the developed method are the same as those of the lobes established using constant speed cutting.  相似文献   

10.
Traditional cutter positioning methods have defects of global errors and incomplete optimization. Because of using local differential geometry and focusing on the cutting contact point, these defects cannot be avoided and will deteriorate accuracy in precision machining. The authors presented the conception of actual cutting edge of a toroidal mill which was extended from cutting contact point, and pointed out its importance in programming. Instantaneous cutter position error (ICPE) was also investigated. A new global method based on the ICPE curve was presented. Taking the relationship between surface and cutter into consideration thoroughly, this global method shows many advantages which have been verified by simulation and cutting tests.  相似文献   

11.
The Harmonic Fitting Method (HFM), presented in the first part of this work, is here used to describe the estimate error in statistical terms. In fact, the estimate error can be considered as a random variable that depends on three different random processes: the machining, the part positioning, and the measurement processes. With the HFM it is possible to determine the moments of the estimate error (systematic value and covariance matrix) as a function of the inspection plan. It will be demonstrated that the systematic part of the estimate error derives from the systematic part of the machined surface deviations, and that the random part derives from the variability of the machining and measurement processes. In particular, the causes of the machining process variability will be analysed in terms of harmonics, thus establishing a direct relationship between the machining process and the substitute geometry estimate error. Moreover, the possibility of obtaining the probability density function of the estimate error from the HFM will be analysed, together with the problem of the inspection plan optimisation. The HFM will be used to design the optimal inspection plan for a circular geometric feature, and it will be demonstrated that, when the part positioning is subjected to a rotation uncertainty, the estimate errors of the diameter and of the eccentricity are likely to follow a Gaussian and a Rayleigh distribution, respectively. A real case of turned shafts will be considered, and the HFM optimisation of the inspection plan will be discussed.  相似文献   

12.
In this paper, an enhanced numerical method for forming tool design optimisation in three-dimensional (3D) sheet metal forming applications is presented. The applied procedure enables a determination of appropriate forming tool geometry so that the manufacture of a sheet metal product inside specified tolerances would be ensured. In addition to the springback that occurs in the formed part after removal of the forming tools, the impact of the thinning of the sheet metal during the forming process is considered in the method, and both effects are correspondingly compensated for an iterative procedure. Computational efficiency in the E-DA-3D method is achieved mainly because the improved accuracy of the communicated data established corresponding interrelations between the discretised topologies used in the definition of the prescribed product geometry, the current tool geometry, and on this basis actually computed product geometry which is achieved by means of additional point topology mappings. The potential and effectiveness of the method is demonstrated by considering two cases of the forming tool design optimisation that are also experimentally validated.  相似文献   

13.
Achieving sustainability in manufacturing requires that the energy consumption of manufacturing machines be reduced without unduly sacrificing their speed and accuracy. This paper presents the design and control of a novel feed drive whose actuation method and drive configuration change depending on the mode of the machining operation. During rapid traverse, the table is driven at its center of gravity using a linear motor. When cutting begins, the table automatically couples to a motor-driven shaft, while the linear motor provides active vibration damping and quasi-static error compensation. Improvements in speed, accuracy and/or energy efficiency over conventional drives are experimentally demonstrated.  相似文献   

14.
肖作义 《锻压技术》1999,24(4):14-15
提出一种新的加工薄壁管类件的方法,利用该方法可以加工局部变粗的各种形状的管类件,这对于提高工件的结构强度,材料的利用率和降低工件的质量及制造成本具有重要的意义。  相似文献   

15.
16.
Chatter in machining processes: A review   总被引:7,自引:0,他引:7  
Chatter is a self-excited vibration that can occur during machining operations and become a common limitation to productivity and part quality. For this reason, it has been a topic of industrial and academic interest in the manufacturing sector for many years. A great deal of research has been carried out since the late 1950s to solve the chatter problem. Researchers have studied how to detect, identify, avoid, prevent, reduce, control, or suppress chatter.This paper reviews the state of research on the chatter problem and classifies the existing methods developed to ensure stable cutting into those that use the lobbing effect, out-of-process or in-process, and those that, passively or actively, modify the system behaviour.  相似文献   

17.
在分析圆锯片加工石材线条工艺原理的基础上,提出一个集设计、工艺规划和加工数控代码生成为一体的数控加工异型线条自动编程系统的框架,详细介绍系统各组成模块的功能及实现的关键技术,并在面向对象编程语言平台上完成系统的软件编写。系统的运行实践证明了其高效性和实用性。  相似文献   

18.
This paper describes the development of a three-degrees-of-freedom (DOF) desktop reconfigurable machine tool. Recently, numerous micro-components or systems in various areas such as biomedical micro-electro-mechanical systems (MEMS) often require dedicated, precise, and cost-efficient manufacturing processes to cope with large product demand fluctuations in the global market. A downscaled desktop manufacturing machine that can control multi-DOF motions rapidly and smoothly on the basis of a reduced machine size was developed to meeting this demand. In this paper, the conceptual design of a desktop reconfigurable machine, which is capable of controlling the three DOF orientation of a spindle, is presented. Then, static and dynamic structural analyses are performed to characterize the effect of vibration on the manufacturing performance. The results demonstrate the feasibility of simultaneously controlling the position and orientation of the machine tool during the machining operation. Dynamic simulations and experimental results using a closed-loop control with position feedback are presented to illustrate the performance and features of the system. Unlike conventional full-scale manufacturing machines, the developed machine provides a number of advantages, including fast dynamic response, simple design, low cost, and a compact but relatively large workspace without motion singularities.  相似文献   

19.
A novel plasma enhanced CVD (PECVD) technique has been developed in order to combine energetic particle bombardment and high plasma densities found in ionized PVD with the advantages from PECVD such as a high deposition rate and the capability to coat complex and porous surfaces. In this PECVD method, an ionized plasma is generated above the substrate by means of a hollow cathode discharge. The hollow cathode is known to generate a highly ionized plasma and the discharge can be sustained in direct current (DC) mode, or in high-power pulsed (HiPP) mode using short pulses of a few tens of microsecond. The latter option is similar to the power scheme used in high power impulse magnetron sputtering (HiPIMS), which is known to generate a high degree of ionization of the sputtered material, and thus providing new and added means for the synthesis of tailor-made thin films. In this work amorphous carbon coatings containing copper, have been deposited using both HiPP and DC operating conditions. Investigations of the bulk plasma using optical emission spectroscopy verify the presence of Ar+, C+ as well as Cu+ when running in pulsed mode. Deposition rates in the range 30 μm/h have been obtained and the amorphous, copper containing carbon films have a low hydrogen content of 4–5 at%. Furthermore, the results presented here suggest that a more efficient PECVD process is obtained by using a superposition of HiPP and DC mode, compared to using only DC mode at the same average input power.  相似文献   

20.
活塞异型截面曲线数控加工中的一种逼近方法   总被引:1,自引:0,他引:1  
针对发动机活塞截面曲线的非标准性,提出了采用最少的圆弧段逼近加工曲线的方法,详细地分析了用圆弧段逼近非标准随圆曲线的过程,并对逼近误差进行分析,满足加工拟合曲线的要求。此种方法计算简单,精度较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号