The whole world is facing a health crisis, that is unique in its kind, due to the COVID-19 pandemic. As the coronavirus continues spreading, researchers are concerned by providing or help provide solutions to save lives and to stop the pandemic outbreak. Among others, artificial intelligence (AI) has been adapted to address the challenges caused by pandemic. In this article, we design a deep learning system to extract features and detect COVID-19 from chest X-ray images. Three powerful networks, namely ResNet50, InceptionV3, and VGG16, have been fine-tuned on an enhanced dataset, which was constructed by collecting COVID-19 and normal chest X-ray images from different public databases. We applied data augmentation techniques to artificially generate a large number of chest X-ray images: Random Rotation with an angle between ??10 and 10 degrees, random noise, and horizontal flips. Experimental results are encouraging: the proposed models reached an accuracy of 97.20?% for Resnet50, 98.10?% for InceptionV3, and 98.30?% for VGG16 in classifying chest X-ray images as Normal or COVID-19. The results show that transfer learning is proven to be effective, showing strong performance and easy-to-deploy COVID-19 detection methods. This enables automatizing the process of analyzing X-ray images with high accuracy and it can also be used in cases where the materials and RT-PCR tests are limited.
相似文献The extensively utilized tool to detect novel coronavirus (COVID-19) is a real-time polymerase chain reaction (RT-PCR). However, RT-PCR kits are costly and consume critical time, around 6 to 9 hours to classify the subjects as COVID-19(+) or COVID-19(-). Due to the less sensitivity of RT-PCR, it suffers from high false-negative results. To overcome these issues, many deep learning models have been implemented in the literature for the early-stage classification of suspected subjects. To handle the sensitivity issue associated with RT-PCR, chest CT scans are utilized to classify the suspected subjects as COVID-19 (+), tuberculosis, pneumonia, or healthy subjects. The extensive study on chest CT scans of COVID-19 (+) subjects reveals that there are some bilateral changes and unique patterns. But the manual analysis from chest CT scans is a tedious task. Therefore, an automated COVID-19 screening model is implemented by ensembling the deep transfer learning models such as Densely connected convolutional networks (DCCNs), ResNet152V2, and VGG16. Experimental results reveal that the proposed ensemble model outperforms the competitive models in terms of accuracy, f-measure, area under curve, sensitivity, and specificity.
相似文献Corona Virus Disease 2019 (COVID19) has emerged as a global medical emergency in the contemporary time. The spread scenario of this pandemic has shown many variations. Keeping all this in mind, this article is written after various studies and analysis on the latest data on COVID19 spread, which also includes the demographic and environmental factors. After gathering data from various resources, all data is integrated and passed into different Machine Learning Models in order to check its appropriateness. Ensemble Learning Technique, Random Forest, gives a good evaluation score on the tested data. Through this technique, various important factors are recognized and their contribution to the spread is analyzed. Also, linear relationships between various features are plotted through the heat map of Pearson Correlation matrix. Finally, Kalman Filter is used to estimate future spread of SARS-Cov-2, which shows good results on the tested data. The inferences from the Random Forest feature importance and Pearson Correlation gives many similarities and few dissimilarities, and these techniques successfully identify the different contributing factors. The Kalman Filter gives a satisfying result for short term estimation, but not so good performance for long term forecasting. Overall, the analysis, plots, inferences and forecast are satisfying and can help a lot in fighting the spread of the virus.
相似文献