共查询到20条相似文献,搜索用时 0 毫秒
1.
针对标签传播算法稳定性不足、准确性较差的问题,提出了融合K-shell和标签熵的标签传播重叠社区发现算法OCKELP。首先,采用K-shell算法减少了标签初始化时间,并利用标签熵的更新序列提高了算法的稳定性;其次,引入综合影响力进行标签选择,并将社区层次信息和节点局部信息融合提高了算法的准确性。在真实网络数据集上,OCKELP相较于重叠社区发现算法(COPRA)、基于多核心标签传播的重叠社区识别方法(OMKLP)、SLPA的模块度最大提升分别约68.64%、53.99%、42.29%,在人工网络数据集的归一化互信息(NMI)值上,OCKELP相较于其他三种算法也有着明显优势,且随着重叠节点隶属社区数量的增加可以挖掘出社区的真实结构。 相似文献
2.
针对节点初始标签散乱及标签传播随机性大的问题,提出一种融合标签预处理与节点影响力的重叠社区发现算法。首先,计算节点影响力,逐步选择影响力值最大的节点作为中心节点;然后,用中心节点的标签对同质的邻居节点进行标签预处理,减少了初始标签数量,降低了后续标签传播的随机性,并初步识别出了重叠节点;其次,通过标签隶属系数识别重叠节点,用节点影响力值选择非重叠节点标签,提高了算法的稳定性和准确性;最后,以最大化自适应函数增量为目标,对内聚度弱的社区进行合并,提高了社区质量。仿真实验结果表明:对于六个真实网络,所提算法在50%的数据集上具有最大的扩展模块度值;而在不同混合度、节点重叠度和节点最大归属社区数的人工基准网络上,该算法在标准化互信息(NMI)指标上都具有最好的性能。综上所述,该算法对各类网络都具有较好的适应性,且具有接近线性的时间复杂度。 相似文献
3.
针对节点初始标签散乱及标签传播随机性大的问题,提出一种融合标签预处理与节点影响力的重叠社区发现算法。首先,计算节点影响力,逐步选择影响力值最大的节点作为中心节点;然后,用中心节点的标签对同质的邻居节点进行标签预处理,减少了初始标签数量,降低了后续标签传播的随机性,并初步识别出了重叠节点;其次,通过标签隶属系数识别重叠节点,用节点影响力值选择非重叠节点标签,提高了算法的稳定性和准确性;最后,以最大化自适应函数增量为目标,对内聚度弱的社区进行合并,提高了社区质量。仿真实验结果表明:对于六个真实网络,所提算法在50%的数据集上具有最大的扩展模块度值;而在不同混合度、节点重叠度和节点最大归属社区数的人工基准网络上,该算法在标准化互信息(NMI)指标上都具有最好的性能。综上所述,该算法对各类网络都具有较好的适应性,且具有接近线性的时间复杂度。 相似文献
4.
社区检测是复杂网络分析的重要研究任务之一,其检测结果有助于人们深入理解复杂网络的社区结构,同时为下游任务提供支持,如内容推荐、链路检测等。针对复杂网络的社区检测问题,提出了一种基于标签传播的两阶段社区检测算法——TS-LPA。TS-LPA采用扩展邻域的思想来量化节点的传播能力,并在此基础上,利用节点信息和网络中边的权重等信息,提出了新的评价指标来衡量节点的中心性和节点之间的影响力。所提算法在计算节点中心性的基础上确定了节点标签更新的顺序和种子节点的选择策略,消除了算法在更新过程中的不稳定。在节点标签更新的过程中,为了更好地利用邻居节点标签类别来进行标签更新,TS-LPA采用广度优先传播的思想,提出了第二阶段标签传播方式。当标签开始传播的时候,待更新节点的所有邻居节点都对该节点的类别标签产生影响,同时,为了减轻周围邻居节点对待更新节点的支配程度,除邻居节点的影响外,加入附近种子节点对待更新节点的影响,共同完成节点的标签更新。在不同的真实数据集和人工合成数据集的实验结果分析表明,TS-LPA在消除随机性、表现出较强稳定性的同时,有效提高了社区检测的质量。 相似文献
5.
周军 《网络安全技术与应用》2014,(9):23-25
社团发现作为网络科学中一个重要的基础问题受到了广泛的关注和重视.针对社团结构的研究为我们提供了从中尺度上分析和理解网络的途径,具有重要的理论和实际意义.已有的研究大多关注无向图和非重叠社团的发现.本文基于标签传递和用户排序的思想设计了一个有向图上的重叠社团发现算法,实际数据上的实验表明了算法在发现用户多重社团属性和确定社团规模方面的有效性. 相似文献
6.
Jinhuan Ge Heli Sun Chenhao Xue Liang He Xiaolin Jia Hui He Jiyin Chen 《Computational Intelligence》2021,37(1):484-510
Traditional community detection methods in attributed networks (eg, social network) usually disregard abundant node attribute information and only focus on structural information of a graph. Existing community detection methods in attributed networks are mostly applied in the detection of nonoverlapping communities and cannot be directly used to detect the overlapping structures. This article proposes an overlapping community detection algorithm in attributed networks. First, we employ the modified X‐means algorithm to cluster attributes to form different themes. Second, we employ the label propagation algorithm (LPA), which is based on neighborhood network conductance for priority and the rule of theme weight, to detect communities in each theme. Finally, we perform redundant processing to form the final community division. The proposed algorithm improves the X‐means algorithm to avoid the effects of outliers. Problems of LPA such as instability of division and adjacent communities being easily merged can be corrected by prioritizing the node neighborhood network conductance. As the community is detected in the attribute subspace, the algorithm can find overlapping communities. Experimental results on real‐attributed and synthetic‐attributed networks show that the performance of the proposed algorithm is excellent with multiple evaluation metrics. 相似文献
7.
为进一步优化重叠社区检测算法,提出了一种新的基于度和节点聚类系数的节点重要性定义,按照节点重要性降序更新节点,固定节点更新策略,提高社区检测的稳定性。在此基础上,提出了一种基于图嵌入和多标签传播的重叠社区检测算法(overlapping community detection based on graph embedding and multi-label propagation algorithm,OCD-GEMPA)。该算法结合node2vec模型对节点进行低维向量表示,构建节点之间的权重值矩阵,根据权重值计算标签归属系数,据此选择标签,避免了随机选择问题。在真实数据集和人工合成数据集上对该算法进行实验验证,实验结果表明,与其他重叠社区检测算法相比,OCD-GEMPA在EQ和NMI这两个指标都有明显提升,具有更好的准确性和稳定性。 相似文献
8.
随着社区规模的不断扩大,基于标签传播思想的重叠社区发现算法得到较大发展。经典重叠社区发现算法虽然很好的利用了标签随机传播特性实现了重叠社区发现,但是也导致该算法输出结果很不稳定、社区生成质量较差。本文的主要贡献在于,采用最新的ClusterRank为所有节点排序降低随机性带来的结果稳定性差的弊端;引入最大社区节点数以控制最大社区节点数目防止远大于其他社区的Monster出现。采用真实数据集和人工网络验证,结果证实,改良后算法可行有效。 相似文献
9.
10.
11.
图神经网络在学习节点表示中展现了其突出的能力,然而在社团检测方面,大多数图神经网络模型仍然使用K-means来定位社团中心,为了克服K-means不适用于高维空间下聚类的缺点,提出了联合图的全局和局部互信息的重叠社团检测算法(overlapping community detection algorithm using global and local mutual information of graph,overDGI),这是一种用于处理重叠社团检测问题的图神经网络。首先,采用最大化图互信息和社团互信息使得隶属于同一社团的节点间的向量表示距离更近、更接近社团中心;然后,设计了一个目标分布来帮助模型更好地解决重叠社团检测任务。综合实验表明,overDGI在重叠社团划分上的表现对比现有的几种基准算法都有很强的竞争力。 相似文献
12.
针对现有基于标签传播的复杂网络重叠社区识别方法所存在的社区识别精度不稳定,以及随机性较强等缺陷,提出一种新的基于标签传播的复杂网络重叠社区识别算法NOCDLP(a novel algorithm for overlapping community detection based on label propagation).该算法首先搜索网络中若干以度较高节点为中心的完全子图,并以这些完全子图为起点进行标签传播;其次通过分析节点与社区连接强度以及社区接纳某节点后的社区内部连接紧密度情况给出节点归属社区强度函数,以此作为标签传播的依据提高社区的识别精度;再次,在标签传播过程中,NOCDLP算法设置标签传播控制标记,以避免标签传播算法随机性较强的缺陷;最后,在已形成的社区中通过整理重叠节点获得更准确的重叠社区结构.算法在人工网络与真实网络中完成测试,同时与多个经典算法进行对比分析,实验结果验证了NOCDLP算法是有效的、可行的. 相似文献
13.
为了减少标签传播算法(LPA)中不必要的更新、解决算法准确率低且稳定性差的问题,提出了基于节点中心性和社区相似性的快速标签传播算法(FNCS_LPA)。按照节点中心性度量对网络的节点从低到高进行排序后加入节点信息列表,利用节点信息列表来指导更新过程,提高社区发现的稳定性并避免不必要的更新;采取基于社区相似性的更新规则,提高了社区发现的准确率。在真实社会网络和LFR基准网络上进行实验:相比LPA和三种较好的LPA改进算法,FNCS_LPA在执行速度方面提升了几十倍,真实社会网络的模块度也相对较高,在社区结构比较模糊的LFR基准网络上的归一化互信息有明显的优势。实验结果表明FNCS_LPA在提高执行速度的基础上,提高了算法的稳定性和准确率。 相似文献
14.
Community detection is one of the most important ways to reflect the structures and mechanisms of a social network. The overlapping communities are more in line with the reality of the social networks. In society, the phenomenon of some members sharing memberships among different communities reflects as overlapping communities in the networks. Dealing with big data networks, it is a challenging and computationally complex problem to detect overlapping communities. In this paper, we propose highly scalable variants of a community-detection algorithm in a parallel manner called Label Propagation with nodes Confidence (PLPAC). We introduce MapReduce into our scheme to process the big data in a parallel manner and guarantee the efficiency of community detection. We implemented the algorithm on artificial networks as well as real networks to evaluate the accuracy and speedup of the proposed method. Experimental results on datasets from different scenarios illustrate that the improved label propagation method outperforms the state-of-the-art methods in terms of accuracy and time efficiency. 相似文献
15.
随着网络脆弱性逐渐引起人们的关注,对于一个复杂网络,对其关键链路的探测已经越来越重要。根据网络所具有的社团结构特征,立足于网络的社团划分,结合GN算法思想,把标签传播算法引入关键链路探测中。针对原有算法在迭代过程中出现的每个顶点都会得到一个标签而造成的资源浪费和随机迭代出现结果不稳定的问题,采用一次传播标签把结构较紧密的顶点绑定在一起和依据度顺序来更新标签的方法。通过实验验证,该算法能快速、稳定、高效地查找复杂网络中的关键链路。 相似文献
16.
为挖掘复杂网络中的重叠社团结构,在标签传播算法的基础上,从链路的角度出发,提出一种新的标签更新策略。考虑不同邻居对链路标签贡献值的不同特点,使其更新过程更加快速,克服当前基于节点的标签传播算法需要指定节点所属社团个数的缺陷,在无需人工干预的情况下得到稳定的重叠社团结构。将该算法分别应用于人工网络和真实的社会网络中,实验结果表明,该算法能够快速、有效地挖掘稳定的重叠社团结构。 相似文献
17.
Community detection is a significant research problem in various fields such as computer science, sociology and biology. The singular characteristic of communities in social networks is the multimembership of a node resulting in overlapping communities. But dealing with the problem of overlapping community detection is computationally expensive. The evolution of communities in social networks happens due to the self-interest of the nodes. The nodes of the social network acts as self-interested players, who wish to maximize their benefit through interactions in due course of community formation. Game theory provides a systematic framework tox capture the interactions between these selfish players in the form of games. In this paper, we propose a Community Detection Game (CDG) that works under the cooperative game framework. We develop a greedy community detection algorithm that employs Shapley value mechanism and majority voting mechanism in order to disclose the underlying community structure of the given network. Extensive experimental evaluation on synthetic and real-world network datasets demonstrates the effectiveness of CDG algorithm over the state-of-the-art algorithms. 相似文献
18.
重叠社区结构挖掘旨在发现复杂网络中多个独立社区之间的重叠部分,其在社交、交通、舆情乃至反恐等领域具有广泛的应用。然而,目前基于标签传播的重叠社区挖掘算法在社区结构模糊的网络中表现出较强的随机性,导致准确度不高。针对重叠社区模糊边界导致的不确定性和低准确度问题,提出一种融合特征向量中心性与标签熵的标签传播算法ECLE-LPA。ECLE-LPA通过融合节点的K-核迭代因子与特征向量中心性来计算节点影响力并初始化节点标签,在标签传播过程中,通过节点标签熵和节点间亲密度更新节点标签列表及其标签隶属度,从而较好地克服了社区模糊边界的识别问题。实验结果表明:在Les Miserables、Polbooks、Football、Polblogs和Netscience等真实网络中,ECLE-LPA划分结果的EQ值普遍比对比算法提高了1%~3%;在社区结构模糊的人工网络中,ECLE-LPA划分结果的NMI值比其他标签传播算法提高了10%以上。 相似文献
19.
20.
识别网络社区对于了解社会网络的结构和功能具有重要意义。由于网络中某些节点可能属于多个社区,因此重叠社区的研究已经吸引了人们越来越多的关注。本文针对目前从局部社区扩展成全局社区时有关算法的种子节点选择不合理的情形,提出了一种基于种子节点选择的重叠社区发现算法。本算法首先根据影响力函数找出局部影响力最大的节点,由这些节点构成的种子集合较好的分布在整个网络中,然后以这些种子点构造初始社区,根据设定的吸引度函数选择性添加节点来进行社区扩展。实验结果表明,该算法在真实网络上进行测试时能够有效的挖掘网络中的重叠社区。 相似文献