首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrodynamic characteristics in aqueous solution at ionic strength I=0.2  of carboxymethylchitins of different degrees of chemical substitution have been determined. Experimental values varied over the following ranges: the translational diffusion coefficient (at 25.0°C), 1.1<107×D<2.9 cm2 s−1; the sedimentation coefficient, 2.4<s<5.0 S; the Gralen coefficient (sedimentation concentration-dependence parameter), 130<ks<680 mL g−1; the intrinsic viscosity, 130<[η]<550 mL g−1. Combination of s with D using the Svedberg equation yielded ‘sedimentation–diffusion' molecular weights in the range 40 000<M<240 000 g mol−1. The corresponding Mark–Houwink–Kuhn–Sakurada (MHKS) relationships between the molecular weight and s, D and [η] were: [η]=5.58×10−3 M0.94; D=1.87×10−4 M−0.60; s=4.10×10−15 M0.39. The equilibrium rigidity and hydrodynamic diameter of the carboxymethylchitin polymer chain is also investigated on the basis of wormlike coil theory without excluded volume effects. The significance of the Gralen ks values for these substances is discussed.  相似文献   

2.
3.
Characteristic electrochemical transport parameters for an experimental poly(ethylene)terephtalate (PET) track-etched membrane with well-defined structure and low porosity (Θ=0.13%) were determined with the membrane in contact with KCl solutions at different concentrations. Membrane potential, Δφm, measurements were performed to investigate the effective fixed charge concentration, Xf, and transport number of the ions, ti, in the membrane using two different procedures: keeping the concentration ratio constant, or keeping one concentration constant and changing the other one. Results show the membrane presents a weak cation-exchanger character, since the following values were obtained: Xf=−(2.5±0.2)×10−2 M, tK =(0.56±0.06), tCl=(0.44±0.05); taking into account these values, concentration dependence of membrane potential was predicted. Membrane electrical resistance, Rm, was obtained from Impedance Spectroscopy (IS) measurements using equivalent circuits as models, and the membrane porosity Θ=(0.11±0.02)% was also obtained from resistance values, which agrees very well with the value determined from geometrical parameters. From Rm, Δφm and Θ values, the diffusion coefficient of the ions in the membrane pores can be calculated, and the following average values were obtained: DK+=(1.9±0.4)×10−9 m2/s and DCl=(0.8±0.2)×10−9 m2/s, but for an average concentration higher than 0.06 M, their values do not differ practically from solution in agreement with the small negative charge previously indicated.  相似文献   

4.
Phase transition phenomenon of the 1-dodecanol monolayer at the air/water interface was studied by the dynamic γ(t) curves and the adsorption isotherm obtained by ellipsometry at 20 °C. The surface-concentration adsorption isotherm clearly showed three abrupt increases at bulk concentration C of 1.3 × 10−9, 2 × 10−9 and 3.7 × 10−9 mol/mL, respectively. The 1st and the 3rd transitions observed herein, that were typical 2D first-order transitions, were consistent with the gas to liquid expanded (G–LE) and the liquid expanded to liquid condensed (LE–LC) phase transitions observed in a previous tensiometry study. The 2nd transition that occurred at C = 2 × 10−9 mol/mL was not identified from any previous dynamic surface-tension profiles. Judging from the substantial increase in the film thickness of the transition, it was believed that the orientation change of the adsorbed molecule was involved in the LE phase. A LEh and a LEv phase, that denoted the “lie-down” and “stand-up” types of adsorption, respectively, was used to describe this transition and a cusp, instead of a constant surface-tension region, was observed in the dynamic γ(t) curves for this transition. This suggested that, since the surface tension varied during the transition process, the newly identified LEh and LEv transition might not be the typical first-order type of phase transition.  相似文献   

5.
Impedance measurements have been performed in molten PbCl2—KCl at 400°C to investigate the mechanism of In(III) reduction and sulphide ion oxidation. In(III) reduction is purely diffusion controlled and represented by a Warburg impedance. The diffusion coefficient obtained for In(III) is D = 0.49 × 10−5 cm2s−1. The first oxidation step of sulphide is rapid and also diffusion controlled.  相似文献   

6.
The capacity intermittent titration technique (CITT) has been developed on basis of the ratio of the potentio-charge capacity to the galvano-charge capacity (RPG) method to determine continuously the solid diffusion coefficient D of the intercalary species within insertion-host materials. In experiment, CITT is based on the capacity response of galvano–potentio-charge in a small voltage region. In theory, CITT is based on the linear equations of D versus q (value of RPG) in different range of q. By the CITT, the Li+ solid diffusion coefficients within LiMn2O4 have been determined at different voltages and different galvano-charge currents. Results shows that the order of magnitude of D varies non-linearly with the “W” shape from 10−9 to 10−11 cm2 s−1 in the voltage range from 3.3 to 4.3 V. The galvano-charge current also leads to the error due to the semi-conductive character of LiMn2O4, and the maximal error may reach as much as one order of magnitude. In addition, the main approximations that lead to errors of CITT are qualitatively analyzed.  相似文献   

7.
M. Best  H. Sillescu   《Polymer》1992,33(24):5249-5253
We describe a simple light scattering set-up for measuring interdiffusion coefficients D in polymer blends by generating spinodal decomposition and subsequent dissolution after temperature jumps across the phase boundary. In blends of polystyrene and polymethylstyrene (random copolymer of 60% m-methylstyrene and 40% p-methylstyrene) D values were obtained between 10−11 and 10−15 cm2s−1 at temperatures up to 50 K above the upper critical solution temperature. The results are discussed in relation to tracer diffusion in the same system.  相似文献   

8.
A constant of specific solubility of 2·5 × 10−8 g cm−2day−1 was determined for fused aluminosilicate particles, by observing in vivo retention kinetics after intravenous injection into rats. Studies over the past years in this laboratory, in which dogs and rats have inhaled labeled aerosols of these particles, have shown retention half-lives in the lung of 460 and 285 days, respectively. By applying these values for solubility and half-life to Mercer's theory of dissolution from the deep lung, the initial distribution of particles deposited in the pulmonary regions of dogs and rats following inhalation was calculated. From an inhaled aerosol with a mass median diameter, Dm, of 1·0 μm and σo = 1·7, a distribution described by Dm = 0·51 μm and σo's ranging from 1·16–1·48 was estimated to have been deposited in the Beagle dog lung. and a Dm =< 0·32 μm and σo's ranging from 1·18–1·29 was similarly calculated for rats.  相似文献   

9.
The swelling features of gelatine gels in water (good solvent) were studied as a function of thermodynamic conditions of sol—gel transition and ripening. It is shown that the degree of equilibrium swelling Qe varies with the volume fraction of the polymer in a casting solution φo in accordance with the prediction of the classic theory: Qe φo−0.4. Qc, as a function of the gelation temperature Tg, the ripening time tr and φo, can be rescaled and described by the single empirical equation: Qe Tgx tryφo−0.4, where x = 0.1, y = 0.15 for wet gels and X = −0.5, y = 0.04 for dried gels. The kinetics of macroscopic swelling is described by the equation of Peters and Candau, with values of collective diffusion coefficients being in good agreement with values obtained by other workers via photon correlation spectroscopy.  相似文献   

10.
J.M.G Cowie  G.H Spence 《Polymer》1998,39(26):7139-7141
Gels of crosslinked β-cyclodextrin have been prepared using dimethylacetamide containing lithium, sodium and potassium triflate salts.

Compositions were adjusted to produce materials with dry surfaces that showed no evidence of solvent leakage. Alternating current conductivity (σ) measurements of ion transport in these systems were made over the temperature range 290–360 K. Systems containing KCF3SO3 exhibited the best range of conductivity values from σ=10−4 S cm−1 (293 K) to σ=1.8×10−3 S cm−1 (360 K). These systems also show a linear dependence of log conductivity on 1/temperature, with activation energies for ion transport in the range 32–48 kJ mol−1.  相似文献   


11.
Numerical and experimental simulations have been conducted for the time history of the diffusion charging process on the surface of aerosol particles by dense bipolar ions under continuum conditions. The range of conditions treated in the numerical simulations include positive-negative ion diffusion coefficient ratio from 0 to 1, aerosol particle radius from 0.1 to 10 μm, Debye ratio Rp/λD from 0 to 1 (equivalent to maximum charge density up to N1 = 1012 cm−3 for an ion temperature of 300 K), the major-to minor axis ratios of prolate spheroids, L, from 1 to 100. The experimental simulation was conducted by using a conductive dummy particle suspended by a thin shielded wire, and the charged particle deposition current flux was measured and the bipolar environments. Then the effect of particle surface charges was simulated by imposing an electric potential on the dummy particles. The results show that, (1) for small ion density (Rp/λD 10−2); the present results are in good agreement with model of Chang et al. (1978, 1983). (2) the aeroso particle charging speed and charging limit increase with increasing Debye ratio; (3) for larger Debye ratio, bipolar charging is faster than unipolar charging; (4) the effect of particle shape L is observed to be significantly influenced by Debye ratios: (5) the charging limit of the aerosol particle increases with L.  相似文献   

12.
A relation was obtained between electro-chemical properties of sodium salts (NaCl, NaBr, and Na2SO4), and the thermodynamic property of permeability in symmetrical cellulose acetate membranes, the distribution coefficient K and the kinetic property, the overall diffusion coefficients D. K and D were obtained by the method we proposed using measured unsteady- and steady-state dialysis data. The K values increase with the increase of water content and are in the range of 10−2 for sodium halides and 10−3 for Na2SO4. D is found to increase with the increase of the solute concentration, and the extrapolated values of D to zero concentration D(0) are obtained as 0.015–0.03 μm2/s and increase with the increase of water content in the membrane. D can be divided into the concentration independent diffusion coefficients in the dense part of the membrane Dd and in the porous Dp, applying a two-part (perfect or dense and imperfect or porous) model of the membrane. Contrary to Dd, Dp increases with the increase of Ww and can be correlated as Dp,c = d exp (γ × Ww). It is shown that the averaged Dd, D increases with the increase of the quantity of the ionic mobility u of the solutes at infinite dilution divided by valence, and that the parameter γ increases with the increase of the ionic mobility u. The value of K increases slightly with the increase of water content and decreases with the increase of the Flory—Huggins parameter χ. The Flory—Huggins parameter χ is calculated from the measured values of distribution coefficients and data obtained from the literature. And it was found that the gradient of linear decrease of χ (λcation) depends on equivalent ionic conductivity of anion of salt, λan.  相似文献   

13.
Maria Andrei  Massimo Soprani 《Polymer》1998,39(26):7041-7047
A new class of polymer electrolytes, based on the interpenetrating polymer network approach, was obtained starting from functionalised macromers, of poly-ether nature, in the presence of a lithium salt (LiBF4, LiClO4, LiCF3SO3) and propylene carbonate (PC) or tetraethyleneglycol dimethylether (TGME), as plasticizers.

The macromers were synthesised by living polymerisation employing a HI/I2 system as the initiator. The macromer has a polymerisable end group, which can undergo radical polymerisation, attached to a monodisperse poly-vinylether, containing suitable ethylene oxide groups for ion coordination. Monomers and macromers were characterised by FTi.r., u.v.–vis, 1H- and 13C-n.m.r.

Self-consistent and easily handled membranes were obtained as thin films by a dry procedure using u.v. radiation to polymerise and crosslink the network precursors, directly on suitable substrates, in the presence of the plasticizer and the lithium salt. The electrolytic membranes were studied by complex impedance and their thermal properties determined by differential scanning calorimetry analysis.

Ionic conductivities (σ) were measured for PC and TGME-based membranes at various plasticizer and salt contents as a function of T (60 to −20°C). LiClO4/PC/PE electrolytes, with 3.8% (w/w) salt and 63% PC, have the highest σ (1.15×10−3 and 3.54×10−4 S cm−1 at 20°C and −20°C, respectively). One order of magnitude lower conductivities are achieved with TGME; samples with 6% (w/w) LiClO4 and 45% (w/w) TGME exhibit σ values of 2.7×10−4 and 2.45×10−5 S cm−1 at 20°C and −20°C.  相似文献   


14.
The lattice strain {2 0 0} and diffraction peak intensity ratio R{1 1 1} have been determined in soft rhombohedral PZT ceramics during the application of an electric field up to 2.5 MV m−1 and as a function of the grain orientation ψ, using high energy synchtron X-ray diffraction. The magnitude of both {2 0 0} and R{1 1 1} increased sharply beyond a field level of 1 MV m−1 due to the onset of ferroelectric domain switching. {2 0 0} exhibited a near linear dependence on cos2 ψ, in agreement with previous studies of the remanent-poled state. In contrast, the R{1 1 1}–cos2 ψ plot showed evidence of saturation in ferroelectric domain switching, particularly for ψ > 60°. The development of lattice strain during poling is discussed in terms of contributions from the intrinsic piezoelectric effect and from residual stress caused by differences in the poling strain of a grain, and the piezoelectric strain of a grain relative to its surroundings.  相似文献   

15.
We have made a theoretical study of the diffusional losses of particles from a fluid flowing radially inward between concentric, parallel, circular plates of radius, Ro. The relative number of particles remaining in the fluid at a distance, r, from the axis of the plates is
where γ = 4πD (Ro2r2)/3Qh, D is the diffusion coefficient of the particles, Q is the volumetric flow rate, and 2h is the separation between the plates. The practical application of the system is discussed.

The same equation applies to parallel flow through a duct of rectangular cross-section if γ = 4DBl/3Qh, where B and l are respectively the duct width and length. It is more accurate than equations now in use to describe this process.  相似文献   


16.
Forward recoil spectrometry (FRES) was used to measure the tracer diffusion coefficients D*PS and D*PXE of deuterated polystyrene (d-PS) and deuterated poly(xylenyl ether) (d-PXE) chains in high molecular weight protonated blends of these polymers. The D*s were shown to be independent of matrix molecular weights and to decrease as M−2, where M is the tracer molecular weight, suggesting that the tracer diffusion of both species occurs by reptation. These D*s were used to determine the monomeric friction coefficients ζ0,PS and ζ0,PXE of the individual PS and PXE macromolecules as a function of ф, the volume fraction of PS in the PS:PXE blend. Since ζ0,PSζ0,PXE at each ф, the rate at which a PS molecule reptates is much greater than that of a PXE molecule, even though both chains are diffusing in identical surroundings. Part of this difference may be due to the difficulty of backbone bond rotation of the PXE molecule. However, even when measured at a constant temperature increment above the glass transition temperature, ζ0,PS and ζ0,PXE were observed to be markedly composition dependent. In addition the ratio ζ0,PS0,PXE varied from a maximum of 4 × 10−2 near ф=0.85 to a minimum of 5 × 10−5 for ф=0.0. These results show that intramolecular barriers do not solely determine the ζ0s of the components in this blend. Clearly, the interactions between the diffusing chains and the matrix chains also influence ζ0.  相似文献   

17.
The standard molal potentials E°m of the Hg/Hg2(OPr)2, OPr electrode at 15°, 20°, 25°, 30° and 35° C have been determined. The E°m values obtained are 0.5114, 0.5072, 0.5031, 0.4988 and 0.4942 V respectively, which can be fitted to the equation Edgm/V = 0.5031 −8.56 × 10−4 (itt/°C − 25)−3.0588 × 10−6 (t/ °C -25)2. The changes in standard free energy, entropy and enthalpy for the cell reaction have been calculated.  相似文献   

18.
Correlation between the equation of state and the temperature dependence of the self-diffusion coefficient D for polymers such as polystyrene (PS) and polydimethyl siloxane (PDMS) and simple liquids such as argon, methane and benzene and the pressure dependence of D for oligomers such as dimethyl siloxane (DMS) and simple liquids such as cyclohexane and methanol has been examined based on the equation of state derived previously. The experimental data used were published by Antonietti et al. and McCall et al. for polymers, by McCall for linear dimethylsiloxanes and by Jonas et al. and Woolf et al. for simple liquids. The expression for D in this work is given by

where A1(M) is a function of molecular weight Mw, C1(T) and P1(T) are functions of temperature and B1, n1 and m1 are constants determined experimentally. For simple liquids, the values of n1 obtained range from 0.3 to 1.2, with an average , and m1 is in the range 0.5–1.2, with . For polymers, values of n1 are in the range 2.5–7.0 for PS and 0.5–1.3 for PDMS and m1 for DMS is in the range 0.8–1.0. The relation Dη/T = f(M) is found to be useful for simple liquids over a wide range of temperature including the critical region and for pressures up to ≈5 kbar

1 kbar = 100 MPa There is a close correlation between ln(D/T) and p and βT through ln(D/T)ln Dc−1p−β−1T, where Dc is D at the critical temperature and p and βT are the thermal expansion coefficient and compressibility, respectively. The molecular weight dependence of D for polymers and simple liquids is discussed based on the experimental data and recent theory of Doi and Edwards. A new model for the mechanism of self-diffusion in the liquid state is proposed.  相似文献   


19.
Poly-p-phenylene (PPP) was synthesized from benzene according to the Kovacic method. Electrodes were made from this electronic insulator by cold- or hot-pressing of the loose, brown powder, under the addition of 7.5 wt. % soot (Corax L®, Degussa AG). The electrochemical insertion and removal of anions HSO4, ClO4 in this material in aqueous solutions of the corresponding acids was investigated by slow cyclic voltammetry.

Initially, only a surface layer of about 0.1 mm thickness takes part in the electrochemical processes, which are reversible. A maximum concentration of anions in the solid of [(−C6H4−)+7 A] is attainable. The maximum degree of insertion is equal to 0.14. The insertion potential UI shifts strongly into the negative direction with increasing concentration c of the acid. A linear UI/c relationship is observed as in the case of graphite, where the intercalation potential is more positive by 20–200 mV for the same electrolyte. The round trip current efficiency for the insertion/removal cycle increases with increasing acid concentration attaining 100% in 14 M H2SO4 or 11.3 M CHlO4. For a given concentration, increases in the same order as with graphite (H2SO4 < HClO4 < HBF4), being somewhat lower for a given electrolyte composition. From anodic current limitation (jlim = 5–10 mA cm−2), a diffusion coefficient of about D = 2 × 10−7 cm2 s−1 is derived for the transport of anions in the bulk of PPP. The striking similarity of our results to former findings with graphite is thoroughly discussed. Some general conclusions are derived thereof.  相似文献   


20.
The theory of the galvanostatic desorption of hydrogen held in a finite palladium layer (thickness, l 10−3−10−2 cm), in a thin palladium layer (thickness, λ 10−6−10−5 cm) and in a composite finite layer of a non-noble metal protected with a thin palladium layer is developed. The diffusion equations are solved by the Laplace transform and their solutions in term of the concentration of dissolved Ni and weakly adsorbed Nw hydrogen are given. Further the Iτ-functions are estimated for small values of the current, which allows the calculation of the characteristic parameters both of the metallic layer and of the partial steps involved, ie the diffusion and the transfer. The transient overpotentials occurring during the electrochemical desorption for a reversible and an irreversible oxidation step are also calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号