首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterial symbiont of the hydrothermal vent tubeworm fixes carbon via the Calvin-Benson cycle and has been shown previously to express a form II ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). The gene cbbM, which encodes this enzyme, has been cloned and sequenced. The gene has the highest identity with the cbbM gene from Rhodospirillum rubrum, and analysis of the inferred amino acid sequence reveals that all active-site residues are conserved. This is the first form II RubisCO cloned and sequenced from a chemoautotrophic symbiont and from a deep-sea organism.  相似文献   

2.
Calvin cycle carbon dioxide fixation genes encoded on DNA fragments from two nonphotosynthetic, chemolithoautotrophic bacteria, Bradyrhizobium japonicum and Xanthobacter flavus, were found to complement and support photosynthetic growth of a ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion mutant of the purple nonsulfur bacterium Rhodobacter sphaeroides. The regulation of RubisCO expression was analyzed in the complemented R. sphaeroides RubisCO deletion mutant. Distinct differences in the regulation of RubisCO synthesis were revealed when the complemented R. sphaeroides strains were cultured under photolithoautotrophic and photoheterotrophic growth conditions, e.g., a reversal in the normal pattern of RubisCO gene expression. These studies suggest that sequences and molecular signals which regulate the expression of diverse RubisCO genes may be probed by using the R. sphaeroides complementation system.  相似文献   

3.
In a ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO)-deficient mutant of Rhodobacter sphaeroides, strain 16PHC, nitrogenase activity was derepressed in the presence of ammonia under photoheterotrophic growth conditions. Previous studies also showed that reintroduction of a functional RubisCO and Calvin-Benson-Bassham (CBB) pathway suppressed the deregulation of nitrogenase synthesis in this strain. In this study, the derepression of nitrogenase synthesis in the presence of ammonia in strain 16PHC was further explored by using a glnB::lacZ fusion, since the product of the glnB gene is known to have a negative effect on ammonia-regulated nif control. It was found that glnB expression was repressed in strain 16PHC under photoheterotrophic growth conditions with either ammonia or glutamate as the nitrogen source; glutamine synthetase (GS) levels were also affected in this strain. However, when cells regained a functional CBB pathway by trans complementation of the deleted genes, wild-type levels of GS and glnB expression were restored. Furthermore, a glnB-like gene, glnK, was isolated from this organism, and its expression was found to be under tight nitrogen control in the wild type. Surprisingly, glnK expression was found to be derepressed in strain 16PHC under photoheterotrophic conditions in the presence of ammonia.  相似文献   

4.
Filamentous cyanobacteria of the genus Anabaena contain a unique open reading frame, rbcX, which is juxtaposed and cotranscribed with the genes (rbcL and rbcS) encoding form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Plasmid constructions containing the genes from Anabaena sp. strain CA were prepared, and expression studies in Escherichia coli indicated that the product of the rbcX gene mimicked the ability of chaperonin proteins to facilitate the proper folding of recombinant RubisCO proteins. The purified recombinant Anabaena sp. strain CA RubisCO, much like the RubisCO enzymes from other cyanobacteria, was shown not to undergo inhibition of activity during a time course experiment, and the properties of this chaperoned recombinant protein appear to be consistent with those of the enzyme isolated from the native organism.  相似文献   

5.
6.
7.
8.
The dct locus of Rhodobacter capsulatus encodes a high-affinity transport system for the C4-dicarboxylates malate, succinate, and fumarate. The nucleotide sequence of the region downstream of the previously sequenced dctP gene (encoding a periplasmic C4-dicarboxylate-binding protein) was determined. Two open reading frames (ORFs) of 681 bp (dctQ) and 1,320 bp (dctM) were identified as additional dct genes by insertional mutagenesis and complementation studies. DctQ (24,763 Da) and DctM (46,827 Da) had hydropathic profiles consistent with the presence of 4 and 12 potential transmembrane segments, respectively, and were localized in the cytoplasmic membrane fraction after heterologous expression of the dctQM ORFs in Escherichia coli. DctP, DctQ, and DctM were found to be unrelated to known transport proteins in the ABC (ATP-binding cassette) superfamily but were shown to be homologous with the products of previously unidentified ORFs in a number of gram-negative bacteria, including Bordetella pertussis, E. coli, Salmonella typhimurium, Haemophilus influenzae, and Synechocystis sp. strain PCC6803. An additional ORF (rypA) downstream of dctM encodes a protein with sequence similarity to eukaryotic protein-tyrosine phosphatases, but interposon mutagenesis of this ORF did not result in a Dct- phenotype. Complementation of a Rhizobium meliloti dctABD deletion mutant by heterologous expression of the dctPQM genes from R. capsulatus demonstrated that no additional structural genes were required to form a functional transport system. Transport via the Dct system was vanadate insensitive, and in uncoupler titrations with intact cells, the decrease in the rate of succinate transport correlated closely with the fall in membrane potential but not with the cellular ATP concentration, implying that the proton motive force, rather than ATP hydrolysis, drives uptake. It is concluded that the R. capsulatus Dct system is a new type of periplasmic secondary transporter and that similar, hitherto-unrecognized systems are widespread in gram-negative bacteria. The name TRAP (for tripartite ATP-independent periplasmic) transporters is proposed for this new group.  相似文献   

9.
10.
Two strains carrying metE::Tn10 insertions (upstream of the udp gene) were used to isolate mutants of Escherichia coli overexpressing udp. These strains differ in their gene order; one contains an inversion between the rrnD and rrnE rRNA operons. Selection was based on the ability of overexpressed Udp to complement thymine auxotrophy. Chromosomal rearrangements that connect the udp gene and promoters of different rrn operons were obtained by this selection. Seven of 14 independent mutants selected in one of the initial strains contained similar inversions of the metE-rrnD segment of the chromosome (about 12% of its length). Another mutant contained traces of a more complicated event, inversion between rrnB and rrnG operons, which was followed by reinversion of the segment between metE and the hybrid rrnG/B operon. Similar inversions (udp-rrn) in a strain already carrying an rrnE-rrnD inversion flip the chromosomal segment between metE and rrnD/E in the opposite direction. In this case, inversions are also accompanied by duplications of the chromosomal region between the rrnA and hybrid udp-rrnD/E operons. PCR amplification with a set of oligonucleotides from the rrn, Tn5, and met genes was used for more detailed mapping. Amplified fragments of the rearranged chromosomes connecting rrnD sequences and insertion elements were sequenced, and inversion endpoints were established.  相似文献   

11.
In the present work we report the high-level expression of foreign genes encoding the light-harvesting (LHII) membrane-spanning polypeptides in photosynthetic bacteria. To do this we first constructed three deletion strains of Rhodovulum (Rhv.) sulfidophilum in which all or part of the puc operon, encoding the peripheral light-harvesting proteins, is missing. To investigate the heterologous expression of the light-harvesting polypeptides from Rb. capsulatus in Rhv. sulfidophilum and vice versa we have reintroduced functional foreign LH genes into these and equivalent strains of Rhodobacter (Rb.) capsulatus. In some cases very high levels of expression were obtained (85%) of those observed in the wild type), while in other cases much lower expression was observed; possible reasons for these differences are discussed. The heterologously expressed proteins were shown to contain normal pigment-binding sites and to be normally and functionally integrated within the host photosynthetic apparatus. The results indicate that heterologous proteins are able to assemble properly and enter into the same protein-protein interactions as their analogs originally present in the host strain.  相似文献   

12.
13.
The major core oligosaccharide biosynthesis operons from prototype Escherichia coli strains displaying R1 and R4 lipopolysaccharide core types were polymerase chain reaction-amplified and analyzed. Comparison of deduced products of the open reading frames between the two regions indicate that all but two share total similarities of 94% or greater. Core oligosaccharide structures resulting from nonpolar insertion mutations in each gene of the core OS biosynthesis operon in the R1 strain allowed assignment of all of the glycosyltransferase enzymes required for outer core assembly. The difference between the R1 and R4 core oligosaccharides results from the specificity of the WaaV protein (a beta1, 3-glucosyltransferase) in R1 and WaaX (a beta1, 4-galactosyltransferase) in R4. Complementation of the waaV mutant of the R1 prototype strain with the waaX gene of the R4 strain converted the core oligosaccharide from an R1- to an R4-type lipopolysaccharide core molecule. Aside from generating core oligosaccharide specificity, the unique beta-linked glucopyranosyl residue of the R1 core plays a crucial role in organization of the lipopolysaccharide. This residue provides a novel attachment site for lipid A-core-linked polysaccharides and distinguishes the R1-type LPS from existing models for enterobacterial lipopolysaccharides.  相似文献   

14.
15.
Growth of Saccharomyces cerevisiae with a fatty acid as carbon source was shown previously to require function of either glucose-6-phosphate dehydrogenase (ZWF1) or cytosolic NADP+-specific isocitrate dehydrogenase (IDP2), suggesting dependence of beta-oxidation on a cytosolic source of NADPH. In this study, we find that DeltaIDP2DeltaZWF1 strains containing disruptions in genes encoding both enzymes exhibit a rapid loss of viability when transferred to medium containing oleate as the carbon source. This loss of viability is not observed following transfer of a DeltaIDP3 strain lacking peroxisomal isocitrate dehydrogenase to medium with docosahexaenoate, a nonpermissive carbon source that requires function of IDP3 for beta-oxidation. This suggests that the fatty acid- phenotype of DeltaIDP2DeltaZWF1 strains is not a simple defect in utilization. Instead, we propose that the common function shared by IDP2 and ZWF1 is maintenance of significant levels of NADPH for enzymatic removal of the hydrogen peroxide generated in the first step of peroxisomal beta-oxidation in yeast and that inadequate levels of the reduced form of the cofactor can produce lethality. This proposal is supported by the finding that the sensitivity to exogenous hydrogen peroxide previously reported for DeltaZWF1 mutant strains is less pronounced when analyses are conducted with a nonfermentable carbon source, a condition associated with elevated expression of IDP2. Under those conditions, similar slow growth phenotypes are observed for DeltaZWF1 and DeltaIDP2 strains, and co-disruption of both genes dramatically exacerbates the H2O2s phenotype. Collectively, these results suggest that IDP2, when expressed, and ZWF1 have critical overlapping functions in provision of reducing equivalents for defense against endogenous or exogenous sources of H2O2.  相似文献   

16.
The ura-blaster technique for the disruption of Candida albicans genes has been employed in a number of studies to identify possible genes encoding virulence factors of this fungal pathogen. In this study, the URA3-encoded orotidine 5'-monophosphate (OMP) decarboxylase enzyme activities of C. albicans strains with ura-blaster-mediated genetic disruptions were measured. All strains harboring genetic lesions via the ura-blaster construct showed reduced OMP decarboxylase activities compared to that of the wild type when assayed. The activity levels in different gene disruptions varied, suggesting a positional effect on the level of gene expression. Because the URA3 gene of C. albicans has previously been identified as a virulence factor for this microorganism, our results suggest that decreased virulence observed in strains constructed with the ura-blaster cassette cannot accurately be attributed, in all cases, to the targeted genetic disruption. Although revised methods for validating a URA3-disrupted gene as a target for antifungal drug development could be devised, it is clearly desirable to replace URA3 with a different selectable marker that does not influence virulence.  相似文献   

17.
Diacetyl is an important food flavor compound produced by certain strains of citrate-metabolizing lactic acid bacteria. Citrate is converted to pyruvate, from which diacetyl is produced via intermediate alpha-acetolactate. This paper reports the cloning and analysis of the gene (aldB) encoding alpha-acetolactate decarboxylase from Lactococcus lactis MG1363. Deletion of the MG1363 chromosomal aldB gene was achieved by double crossover homologous recombination. The mutant strain was found to produce diacetyl; alpha-acetolactate decarboxylase activity was eliminated. Overexpression of the cloned ilvBN genes (encoding an alpha-acetolactate synthase) in the aldB deletion strain produced even higher levels of alpha-acetolactate, acetoin, and diacetyl.  相似文献   

18.
19.
The yeast YCC5 gene encodes a putative amino acid permease and is homologous to GNP1 (encoding a high-affinity glutamine permease). Using strains with disruptions in the genes for multiple permeases, we demonstrated that Ycc5 (which we have renamed Agp1) is involved in the transport of asparagine and glutamine, performed a kinetic analysis of this activity, and showed that AGP1 expression is subject to nitrogen repression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号