共查询到20条相似文献,搜索用时 62 毫秒
1.
在大方位失准角误差的条件下,捷联惯导系统(SINS)初始对准误差模型是非线性的,可以采用粒子滤波(PF)方法进行处理.针对标准PF算法中存在的重要性密度函数难以选取的问题,提出了一种新的迭代容积粒子滤波(ICPF)算法.将Gauss-Newton迭代和容积卡尔曼滤波(CKF)算法相结合,得到迭代CKF(ICKF)算法.该算法利用最新量测信息改进迭代过程中产生的新息方差和协方差,可获得较高的估计精度.由ICKF算法获得粒子滤波算法的重要性密度函数,有效地抑制了粒子退化现象.SINS大方位失准角初始对准的仿真结果和实验结果表明:该算法的滤波精度高于标准PF算法和容积PF(CPF)算法,是一种非常有效的非线性滤波算法. 相似文献
2.
熊炳忠 《计算机工程与应用》2015,51(13):225-229
提出辅助增量粒子滤波方法并给出其算法过程。该方法将增量形式融入辅助变量粒子滤波中,解决由于工程实际中量测可能存在未知系统误差导致无法精确建立量测似然函数的问题,另一方面,其又能保持辅助变量粒子滤波方法的优势,在选取重要性密度函数上有效利用最新观测的信息。该方法能减少重采样次数,较好保持粒子的多样性,使得非线性滤波的精度得以提高。仿真实验结果表明,辅助增量粒子滤波方法能有效减少非线性滤波问题的误差,相对经典滤波方法的滤波精度提高了50%。 相似文献
3.
4.
5.
6.
针对粒子滤波目标跟踪算法粒子退化及跟踪精度问题,提出了一种基于马尔可夫链-蒙特卡罗(MCMC,Markov Chain Monte Carlo)的迭代平方根容积粒子滤波(ISRCPF,iterated square root cubature Kalman particle filter)算法(ISRCPF-MCMC).在该滤波算法中,利用容积数值积分原则计算非线性随机函数的均值和方差,通过正交矩阵分解代替矩阵开方,在生成的粒子滤波建议分布中融入当前量测值,提高对系统后验概率的逼近程度.然后在此基础上融合MCMC抽样算法(MH,Metropolis Hasting)对所选建议分布进行优化,增加粒子多样性,以提高跟踪精度.仿真试验结果表明,ISRCPF-MCMC算法的估计误差与其他算法相比降低至0.403%. 相似文献
7.
为改善SLAM算法中非线性系统状态估计精度不高,计算繁杂的问题,本文创新性地提出了基于二阶中心差分滤波并融合最新观测数据来产生建议分布函数的新算法。新算法基于二阶sterling插值公式处理SLAM中的非线性系统问题,无须计算雅可比矩阵,容易实现。此外,该算法使用Cholesky分解技术,在SLAM概率估计中直接依据协方差平方根因子进行传播,保证协方差矩阵正定性的同时减小了局部线性化的截断误差。仿真试验表明,在粒子数相同的情况下,二阶中心差分FastSLAM(SOFastSLAM)在不同噪声条件下的估计精度均优于FastSLAM2.0、UFastSLAM算法,且用时最少,证实了SOFastSLAM算法的优越性。 相似文献
8.
9.
10.
神经网络的训练是一种非线性系统的辨识问题,基本粒子滤波算法已被成功用于训练神经网络,但基本粒子滤波算法在建议分布的选择上并没有考虑当前时刻观测值的影响,本文针对该问题提出使用扩展卡尔曼滤波器来生成建议分布。由于扩展卡尔曼滤波器在传递近似建议分布的均值和协方差的过程中充分利用了观测值信息,从而可以更好地描述神经网络权值的后验概率分布。实验结果证明,使用扩展卡尔曼滤波器作为建议分布的粒子滤波算法性能明显优于基本粒子滤波算法。 相似文献
11.
针对中心差分卡尔曼滤波(CDKF)跟踪时估计精度较低这一不足,提出了一种基于迭代测量更新的中心差分卡尔曼滤波(ICDKF)方法。本文将迭代滤波理论引入到中心差分卡尔曼滤波算法中,重复利用观测信息,采用经典的非线性非高斯模型进行仿真实验,给出了该算法与扩展卡尔曼滤波(EKF)、中心差分卡尔曼滤波(CDKF)的仿真结果,并分析了其跟踪性能和均方根误差。实验结果表明,迭代中心差分卡尔曼滤波(ICDKF)算法不仅具有无需计算Jacobian矩阵的优点,而且具有更高的估计精度。 相似文献
12.
在基于粒子滤波的时延差定位估计方法中, 重要密度函数的选取将直接影响估计的性能, 为此, 提出了基 于容积粒子滤波的时延差估计(BCPF-TDE) 算法. 该算法利用最新的数据检测信息, 通过容积卡尔曼滤波(CKF) 获 取粒子滤波的重要性密度函数. 仿真实验表明, 在粒子数目相同的情况下, 基于容积粒子滤波的时延差估计(BCPF- TDE) 方法与基于扩展粒子滤波的时延差估计(BEPF-TDE) 方法相比, 定位估计误差只有后者的50% 左右, 而运行时 间相当.
相似文献13.
对于非线性系统而言,容积卡尔曼滤波(Cubature Kalman Filter,CKF)算法是处理状态估计问题的一种有效方法,并且其在高斯噪声下可以获得良好的估计性能.然而,当噪声被重尾噪声污染时,其性能通常会急剧下降.为解决此问题,将Huber方法应用于CKF框架中,取代了传统的最小均方误差(Minimum Mea... 相似文献
14.
标准FastSLAM算法存在着粒子集退化和线性化误差累积的缺陷。针对上述问题,提出了基于平方根无迹卡尔曼滤波(SR-UKF)的FastSLAM算法。SR-UKF选取一组能够代表状态向量统计特性的代表点带入非线性函数处理后重新构建出新的统计特性;使用SR-UFK取代EKF来估计每个粒子的后验位姿提议分布,可以提高粒子采样精度,减缓粒子集的退化;同时SR-UKF可以确保协方差矩阵的非负定,保证了SLAM算法的稳定性。仿真实验结果表明,基于SR-UKF的FastSLAM算法在估计精度和鲁棒性两方面均优于FastSLAM 2.0算法。 相似文献
15.
概率假设密度粒子滤波(P-PHD)以粒子集形式反映目标的状态信息,是一种有效的多目标跟踪方法,其关键步骤是从粒子集中准确提取多目标状态信息。提出一种免聚类概率假设密度粒子滤波多目标状态提取方法,通过分解P-PHD迭代更新过程,筛选疑似真实目标量测类别,并重新分配粒子集,根据新粒子集直接提取目标状态,可避免粒子中心聚类和粒子峰值提取过程。仿真结果表明该方法具有较高状态提取精度。 相似文献
16.
17.
提出了一种改进的粒子滤波目标跟踪算法,提出了限定区域的伪随机算法和根据权值分布的自适应重采样算法来提升目标跟踪的精度和并行特性。同时在算法的FPGA硬件结构实现上,对程序结构进行调整,充分利用流水线并行处理数值计算,运用硬件并行特性加快粒子的权值排序过程。实验结果表明,提出的算法在实验室场景与遮挡情况下都具有良好的跟踪准确性和实时性。 相似文献
18.
针对普通粒子滤波存在的粒子退化和匮乏缺陷,提出了一种利用遗传算法进行重采样的粒子滤波改进方法。该方法通过对每个采样时刻生成的粒子集合进行选择、交叉和变异等遗传迭代,在现有粒子个数范围内生成更多优良粒子,在保留高适应度粒子基础上实现了粒子集合的多样性。相对于普通粒子滤波,基于遗传重采样的粒子滤波仅需要较少的粒子就可以实现状态的精确估计和目标跟踪。数学方程和序列图像实验结果表明了算法的正确性和实用性。 相似文献
19.
图像去噪面临的问题主要有三点:一是噪声抑制和细节保留之间的矛盾;二是实时性与算法复杂度之间的矛盾;三是理想化噪声统计模型与噪声多样性之间的矛盾。由于不同类型滤波模板对不同噪声模型适应性不同,不同尺寸的滤波模板对细节保留程度不同,为此,建立不同类型、不同尺寸的滤波模板的状态方程和观测方程,利用推广的卡尔曼滤波理论将非线性模型近似线性化,利用各模板的观测值,进行卡尔曼滤波。 相似文献
20.
针对动态系统目标跟踪问题,RBPF算法通过将高维状态空间分解成易于处理的线性子部分与非线性子部分,并采取不同策略进行滤波估计。为了提高RBPF的计算效率,提出将粒子群优化思想融入到RBPF滤波估计中,凭借粒子群算法卓越的全局搜索能力,对于状态空间中非线性部分,通过粒子群算法驱使所有采样粒子向高似然区域(最优适应值区域)移动;对于线性状态部分,依然利用卡尔曼滤波进行处理。通过多组实验仿真结果对比,PSO-RBPF利用较少采样粒子、耗费较少时间即能获得极佳的估计精度。 相似文献