首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过粘度,极限氧指数,弯曲及拉伸强度测试研究了有机磷阻燃剂ZR-801R和ZR-802R,无机阻燃剂氢氧化铝以及ZR801R/氢氧化铝复合阻燃剂对环氧树脂体系工艺性能、阻燃性能和力学性能的影响。结果表明:添加质量分数30%的ZR801R时,环氧体系极限氧指数为30.7%,达到UL94-V0级,氢氧化铝的加入会增大环氧体系的粘度。添加质量分数20%的ZR-801R与30%的氢氧化铝时,环氧树脂体系粘度为567 m Pa·s,能够满足RTM成型工艺要求,阻燃达到UL94-V0级,同时具有最佳的力学性能,弯曲强度为72.14 MPa,较只添加ZR-801R的环氧体系提高了15.63%。  相似文献   

2.
考察了3种有机磷阻燃剂对溴化聚苯乙烯阻燃增强聚对苯二甲酸乙二醇酯(PET)材料性能的影响,筛选出了合适的有机磷阻燃剂,全面考察了其用量对阻燃增强PET体系力学性能、热学性能、结晶性能、相对漏电起痕指数(CTI)和灼热丝起燃温度(GWIT)的影响。结果表明,相比多聚芳基磷酸酯和三聚氰胺聚磷酸盐,使用次膦酸盐作为无卤协同阻燃剂的综合性能最好。随着次膦酸盐用量的增加,阻燃增强聚PET材料的拉伸强度和弯曲强度先增加后降低,缺口冲击强度逐渐下降,热变形温度逐渐升高,阻燃性能和结晶性能变好,CTI和GWIT升高。当次膦酸盐用量为6份时,阻燃增强PET材料的拉伸强度为118.0 MPa,弯曲强度为178.5 MPa,缺口冲击强度为7.3 k J/m2,热变形温度为243.7℃,阻燃等级为UL94 V-0(1.6 mm),冷结晶温度为220.3℃,CTI为300 V,GWIT为900℃。  相似文献   

3.
无卤阻燃热塑性聚氨酯的制备与性能研究   总被引:1,自引:0,他引:1  
首先自制了无卤阻燃剂,再与TPU挤出共混,通过热失重分析(TGA)和水平垂直燃烧(UL94)测试对阻燃效果及阻燃机理进行了分析,选择了最佳配方的阻燃剂;随后制备了不同阻燃剂含量的无卤阻燃TPU复合材料,并对复合材料的阻燃性能、力学性能及环保性能等进行了测试。结果表明,自制无卤阻燃剂可以使TPU达到理想的阻燃效果,随着无卤阻燃剂含量的增加,TPU的阻燃性能越来越高,拉伸强度越来越低,当添加量为18%时,复合材料阻燃性可以达到UL94 V-0级(0.8 mm),无滴落,且拉伸强度在20 MPa以上。  相似文献   

4.
固体酸协同MPP对GF增强PA6的阻燃性研究   总被引:1,自引:0,他引:1  
采用热聚合法制备聚磷酸三聚氰胺(MPP)无卤阻燃剂,与固体酸协同阻燃玻纤增强尼龙6材料,实现了玻纤增强尼龙6的无卤阻燃。研究发现:固体酸的引入可增强体系凝聚相阻燃作用,促进材料在燃烧时形成更为连续、致密的炭层。添加质量分数30.00%MPP,质量分数3.00%固体酸可使质量分数30.00%玻纤增强PA6材料达UL94-1.6mm V-0阻燃级别,材料的拉伸强度、断裂伸长率、弯曲强度、冲击强度分别可达84.3MPa,3.8%,128MPa,3.4kJ/m^2,具有良好的综合性能。  相似文献   

5.
为改善聚对苯二甲酸丁二酯(PBT)材料易燃、韧性差等缺点,研制出无卤阻燃增强增韧PBT材料。对比了传统含卤阻燃剂与新型无卤阻燃剂对PBT阻燃性能的影响,并利用氮–磷系无卤阻燃剂HT–202A、玻璃纤维、增韧剂SWR–6B对PBT进行改性,研究了阻燃剂、玻璃纤维、增韧剂对PBT阻燃性能以及力学性能的影响。结果表明,无卤阻燃剂在与含卤阻燃剂含量相当的情况下,可以使PBT阻燃性能达到V–0级;在玻璃纤维含量为30%,阻燃剂HT–202A含量为16%,增韧剂SWR–6B添加量为5%时,PBT材料的阻燃性能达到V–0级,拉伸强度达到101 MPa,弯曲强度达到145 MPa,缺口冲击强度达到9.5 kJ/m~2,综合性能优异。  相似文献   

6.
试验将硅灰石等三种阻燃剂用于氯磺化聚乙烯(CSM)电缆料中,研究了阻燃体系对其工艺性能、力学性能、老化性能以及阻燃性能的影响;结果表明,不同阻燃剂对CSM电缆料的工艺性能影响不大,胶料具有适宜的焦烧时间,且硫化时间短,高效节能;添加硅灰石、勃姆石及超细滑石粉等可提高胶料的硬度、拉伸强度、伸长率及撕裂强度;其中添加硅灰石胶料的力学性能、耐老化性能最好;勃姆石胶料的耐介质性能相对较优;总之,添加硅灰石胶料的综合性能最好,其拉伸强度、最大伸长率、撕裂强度及氧指数分别为10.03MPa、496%、42.10N/mm和32.8%,满足了阻燃电缆料的性能要求。  相似文献   

7.
以微胶囊化技术改性的次磷酸铝(E-AlHP)为阻燃剂对玻纤增强PA6进行无卤阻燃研究,采用垂直燃烧实验、拉伸冲击试验、热失重分析以及扫描电镜分析,考察了E-AlHP及其复配体系对玻纤增强PA6阻燃性能、力学性能、热性能以及炭层形貌的影响。结果表明,E-AlHP的加入有效提高玻纤增强PA6的阻燃性能,且对材料力学性能影响较小,添加量为20%时,材料达到UL94 V-0级(3.2 mm),拉伸强度、断裂伸长率、拉伸弹性模量以及缺口冲击强度分别达到121.57 MPa、3.43%、5.23 GPa及6.1 kJ/m~2。  相似文献   

8.
采用氮磷型阻燃剂三聚氰胺聚磷酸盐(MPP)与硼改性酚醛树脂(BPF)组成的复合阻燃体系对玻纤(GF)增强尼龙66( PA66)复合材料进行阻燃,获得了阻燃性能优异、力学性能良好的增强复合材料,研究了协效阻燃剂BPF/MPP配比、BPF/MPP用量及GF用量对阻燃复合材料阻燃性能的影响,采用微型燃烧量热和质量保持率分析方法研究了阻燃复合材料的燃烧及成炭行为,对复合阻燃剂的协效机理进行了讨论.结果表明,当BPF在BPF/MPP中的质量分数为15%时,添加25% BPF/MPP复合阻燃剂可使20% GF增强PA66复合材料达到V-0( 1.6 mm)阻燃级别,极限氧指数增加至25.3%,拉伸强度、弯曲强度、缺口冲击强度分别为116 MPa,132 MPa,7.1 kJ/m2.该复合材料可满足高性能无卤阻燃的使用要求.  相似文献   

9.
以聚丙烯为基料,短切玻璃纤维为增强材料,添加氮–磷膨胀型阻燃剂,制备了无卤阻燃剂增强聚丙烯复合材料。研究了阻燃剂的含量对复合材料拉伸强度、弯曲模量、悬臂梁缺口冲击强度和氧指数的影响。结果表明:不同含量的阻燃剂对聚丙烯/玻璃纤维/无卤阻燃复合材料的力学性能及阻燃性能有不同程度的影响;阻燃剂和玻璃纤维添加质量份分别为25、18的情况下,复合材料的性能最均衡,复合材料的力学性能及阻燃性能最优。  相似文献   

10.
以氢氧化铝、三聚氰胺和聚磷酸铵为阻燃剂制备了阻燃聚氨酯硬质泡沫,研究了添加氢氧化铝前后阻燃剂用量对聚氨酯(PU)硬泡的阻燃性能和力学性能的影响。结果表明,铝/磷/氮复配阻燃体系的阻燃效果优于磷/氮阻燃体系,阻燃剂总添加量达30份时,PU硬泡同时具备较好的阻燃性能和力学性能,氧指数为32,烟密度为74,平均燃烧时间为31 s,其压缩强度和拉伸强度分别为6.52 MPa和6.16 MPa。  相似文献   

11.
张瑾  刘大光  谭润升  王宏  季璐 《辽宁化工》2023,(10):1422-1424
以FR2025为阻燃剂、TF1645为抗滴落剂对聚碳酸酯进行阻燃改性,研究了二者用量对聚碳酸酯板材(2mm)阻燃性能、光学性能以及力学性能的影响。结果表明:磺酸盐阻燃剂FR2025与聚四氟乙烯抗滴落剂TF1645复配使用时,板材综合性能良好,较低的添加量即可达到阻燃抗滴落要求。当FR2025添加量为0.08%、TF1645添加量为0.4%时,聚碳酸酯板材的阻燃效果最优,对板材光学性能和力学性能影响较小,透光率为88.3%,雾度为1.12%,拉伸强度为68MPa,拉伸弹性模量为2385 MPa,缺口冲击强度67.8 kJ·m-2,弯曲强度为116.8 MPa。  相似文献   

12.
采用水解缩合法,通过改变正硅酸乙酯含量(TE/Si)以及烷硅比(R/Si),制备一系列聚硅氧烷阻燃剂,并将该系列阻燃剂以5%的添加量应用到PC中,研究PC/聚硅氧烷复合体系的力学性能和阻燃性能.结果表明:复合材料的拉伸强度在54.8~61.0 MPa之间,弯曲强度在98.0~104.0 MPa之间,与纯PC的拉伸强度59.7 MPa和弯曲强度105.7 MPa相比可知,阻燃剂对材料的力学性能影响不大.复合材料阻燃性能和极限氧指数(LOI)明显提高,在燃烧过程中,复合材料的热释放速率和烟气产生速率都有不同程度的降低.  相似文献   

13.
采用正交试验方法分别探讨了阻燃纤维含量、阻燃剂含量、阻燃剂配比、纤维长度对复合材料燃烧性能及力学性能的影响,采用极差分析方法对试验结果进行了分析,找出最佳的配方,然后与其它添加不同种类的阻燃剂的复合材料进行性能比较。结果表明,当纤维长度5mm、阻燃纤维质量为总质量的10%、阻燃剂质量为环氧树脂质量的40%、三聚氰胺焦磷酸盐(MPP)和季戊四醇(PER)配比为3∶1时,复合材料的拉伸强度为20.45MPa,氧指数为33.7,垂直燃烧达到UL94V-O级。燃烧性能和力学性能与环氧树脂相比较,有较为显著的提高,综合性能最好。在纤维长度、阻燃纤维含量、阻燃剂含量都相同的情况下,添加不同种类的阻燃剂,其中添加MPP和季戊四醇的复合材料性能最好。  相似文献   

14.
采用磷氮系阻燃剂HT-2、磷酸盐系阻燃剂F-240、玻璃纤维、滑石粉、润滑剂对聚对苯二甲酸丁二醇酯进行改性,研究了阻燃剂对复合材料性能的影响,考察了玻纤、填充剂对复合材料性能的影响。结果表明,磷氮系阻燃剂阻燃效果优于磷酸盐系阻燃剂,玻纤含量为30%、阻燃剂含量为16%、滑石粉含量为4%、OPE蜡含量为0.5%时,PBT复合材料的阻燃级别达到UL94 V-0级,具有良好的加工性能和力学性能,冲击强度达到10.2k J/m2,拉伸强度超过120MPa,弯曲强度超过150MPa。  相似文献   

15.
采用一种新型的无卤阻燃剂,制备无卤阻燃EPDM/PP热塑性硫化胶(TPV)复合材料,并对其性能进行研究;同时考察了增容剂SEBS-g-MAH对无卤阻燃TPV性能的影响。结果表明,随着无卤阻燃剂用量的增加,材料的硬度和100%定伸应力增加,拉伸强度和断裂伸长率减少,当阻燃剂添加量≧30%时,1.5 mm可达到V1、3.0 mm可达到V0,能满足电线电缆行业的使用要求。增容剂SEBS-g-MAH的加入使无卤阻燃剂与TPV的界面黏结得到改善,使无卤阻燃TPV的拉伸强度提高,增容剂加入5%,不影响无卤阻燃TPV的阻燃性能。  相似文献   

16.
分别采用氢氧化铝(ATH)和ATH/红磷(RP)复配填充制备无卤阻燃环氧树脂复合材料研究了ATH的粒径、用量及ATH/RP复合阻燃剂对环氧树脂阻燃性能、力学性能、热性能和介电性能的影响.结果表明,环氧树脂的阻燃性能随ATH用量的增加而提高,其中以ATH/RP复合填充效果更佳,当mATH/mRP为3/1时,氧指数为38.8%;复合材料的耐热性、介电常数和介质损耗均随ATH/RP用量的增加而提高,而弯曲强度和冲击强度则先增加后降低.当ATH/RP用量为10%时,综合力学性能最佳.  相似文献   

17.
苏春义  章维国  柯玉超  俞晨曦 《橡胶科技》2022,20(12):0590-0594
采用新型无卤氮磷系阻燃剂SFR和无机金属阻燃剂氢氧化铝[Al(OH)3]并用制备无卤阻燃三元乙丙橡胶(EPDM)胶料,研究阻燃体系对EPDM胶料性能的影响。结果表明:当53. 3份阻燃剂SFR与40份Al(OH)3并用,EPDM硫化胶的拉伸强度和撕裂强度较高、耐过热水性能优异、体积变化率小、阻燃达到V0级,可很好地解决目前使用普通无卤氮磷系阻燃剂的EPDM胶料的强度低、耐过热水性能差和膨胀率大的问题。  相似文献   

18.
含淀粉膨胀阻燃剂对聚丙烯的性能影响研究   总被引:3,自引:0,他引:3  
采用淀粉与磷酸三聚氰胺复配成膨胀型阻燃剂,制备了膨胀阻燃聚丙烯(PP),利用热重分析法(TG)与差示扫描量热法(DSC)比较了纯PP和阻燃PP的热稳定性及成炭性,研究了阻燃剂对PP阻燃性能和力学性能的影响。结果表明,当阻燃剂用量为35份时,阻燃PP的拉伸强度为17.1 MPa,断裂伸长率为23.5%,弯曲弹性模量为1.62 GPa,弯曲强度为36.36 MPa,氧指数达到26%。  相似文献   

19.
研究了膨胀型阻燃剂聚磷酸铵PNP在乙烯—辛烯共聚物中的应用,考察了阻燃剂用量对体系力学性能及阻燃性能的影响;并采用偶联剂SB来改善体系力学性能;讨论了PNP与A1(OH)3并用对体系阻燃性能的影响。结果表明,采用35份PNP,加入2%的偶联剂可使体系拉伸强度达到11.18MPa,氧指数达到27.8。可以实现低填充量、高效无卤阻燃。  相似文献   

20.
研究了膨胀型阻燃剂聚磷酸铵PNP在乙烯-辛烯共聚物中的应用,考察了阻燃剂用量对体系力学性能及阻燃性能的影响;并采用偶联剂SB来改善体系力学性能;讨论了PNP与Al(0H)。并用对体系阻燃性能的影响。结果表明,采用35份PNP,加入2%的偶联剂可使体系拉伸强度达到11.18MPa,氧指数达到27.8。可以实现低填充量、高效无卤阻燃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号