首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以环氧树脂(EP)为基体,玄武岩纤维(BF)为增强材料,玄武岩水晶玻璃(黑宝石)粉体为摩擦性能调节剂制备BF/黑宝石粉体增强EP基摩擦材料,研究了黑宝石粉体对摩擦材料摩擦磨损性能和力学性能的影响,然后在添加质量分数为5%的黑宝石粉体的基础上,采用相同手段研究了BF含量对摩擦材料性能的影响。结果表明,黑宝石粉体可以极大地提高摩擦材料的摩擦系数,并进一步降低磨损率以及提高摩擦材料的力学性能。BF的加入在一定程度上降低了摩擦材料的摩擦系数,且当BF含量较低或较高时,摩擦材料的磨损率均会有所提升。当BF质量分数为6%时,摩擦材料的综合性能最优,其摩擦系数为0.534,与未加BF的摩擦材料相比仅降低了7.61%,磨损率为0.75%,较未加BF的摩擦材料降低了31.82%,拉伸强度和弯曲强度分别为55.568 MPa和92.750 MPa,与未加BF的摩擦材料相比,分别提高了148%和66.42%。  相似文献   

2.
以酚醛树脂为基体,使用高模量、高强度、吸附性好、热稳定性能优异的芳纶浆粕作为增强纤维,石墨、萤石、重晶石等作为填料,通过干法热压成型工艺制备酚醛树脂基摩擦材料。研究了芳纶浆粕含量对材料力学性能和摩擦磨损性能的影响。利用扫描电子显微镜观察磨损表面形貌,初步分析芳纶浆粕在摩擦材料中的作用机理。结果表明,芳纶浆粕可以使材料的冲击强度和硬度明显提高;当配方中芳纶浆粕含量较低时,材料的摩擦系数变化不大,随着含量进一步增加,材料的摩擦系数明显升高;适量的芳纶浆粕有助于形成致密均匀的摩擦层,进而提高材料的摩擦稳定性,同时降低磨损率。当配方中芳纶浆粕的质量分数为2%时,材料达到最佳的摩擦磨损性能。  相似文献   

3.
制备了以未改性PF、市售改性PF、钼酸铵/丁腈橡胶复合改性PF作为基体的摩擦材料,研究了钼酸铵/丁腈橡胶改性酚醛树脂(PF)对树脂基摩擦材料摩擦磨损性能的影响,并对不同树脂基摩擦材料的冲击强度、硬度和摩擦磨损性能进行了测试。结果表明,复合改性PF基摩擦材料的冲击强度为3.51~3.72 k J/m2,硬度为73~82,高于未改性PF基摩擦材料的冲击强度(3.22 k J/m2)和硬度(52),有效提高了摩擦材料的韧性和硬度。以复合改性PF为基体的摩擦材料,其摩擦系数的稳定性得以提高,其中以含量为10%的摩擦材料最为稳定,磨损率最小。当树脂添加量相同时,复合改性PF基摩擦材料的摩擦系数的稳定性最好,且摩擦系数值保持在0.37~0.40之间,比未改性PF基摩擦材料的摩擦系数和市售改性PF基摩擦材料摩擦系数稳定;复合改性PF基摩擦材料的高温(350℃)磨损为0.45×10~(–7)cm~3/(N·cm),远低于未改性PF基摩擦材料的1.50×10~(–7)cm~3/(N·cm)和市售改性PF基摩擦材料的0.67×10~(–7)cm~3/(N·cm),抗高温热衰退性最好。  相似文献   

4.
借助控制变量法探究石墨烯含量对酚醛树脂基摩擦材料性能的影响,采用一次热压成型技术制备石墨烯改性酚醛树脂基摩擦材料试样,利用洛氏硬度计、剪切强度试验机和定速式摩擦试验机分别检测其硬度、内剪切强度和摩擦磨损性能,分析石墨烯含量与摩擦材料相关性能的变化规律。研究表明,石墨烯含量0.3%试样综合性能最优,随着石墨烯含量增加其硬度和摩擦系数稳定性逐步提高,但石墨烯含量0.4%试样硬度会超过酚醛树脂的适宜硬度范围;中高温阶段含石墨烯的摩擦材料摩擦系数低于不含石墨烯试样但磨损率有所增加,石墨烯含量0.2%试样摩擦系数和磨损率最高,其值为0.344和0.309×10~(-7) cm~3/(N·m);酚醛树脂基摩擦材料的内剪切强度会因各组分材料的黏接性能减弱而降低。  相似文献   

5.
摩擦系数、磨损率和冲击强度是聚合物基摩擦材料的重要性能指标。本文试验研究基体含量对摩擦系数、磨损率的影响和增强体含量对冲击强度的影响,从理论方面分析增强体对摩擦磨损性能的影响。试验结果表明,在进行聚合物基摩擦材料的配方设计时,要根据所选用酚醛树脂和增强纤维的种类合理控制用量,可达到较好的摩擦磨损性能和冲击韧性。  相似文献   

6.
竹炭/碳纤维增强树脂基摩擦材料摩擦磨损性能   总被引:1,自引:0,他引:1  
采用腰果壳油改性酚醛树脂和丁腈橡胶为粘结剂,具有高弹性模量和高强度的碳纤维为增强纤维,竹炭、重晶石和蛭石等为填料,采用热压成型工艺制备树脂基摩擦材料,研究了竹炭含量对摩擦材料的剪切强度、密度和摩擦磨损性能的影响,借助扫描电镜观察磨损表面形貌并分析磨损机理。结果表明:随着竹炭含量的增加,材料的剪切强度和密度相应减少;添加竹炭能明显提升在250℃和350℃下的摩擦系数,对于100℃下的摩擦系数影响较小;增加竹炭含量,材料的磨损率逐渐变大,磨损机制由单一磨粒磨损向黏着磨损和磨粒磨损的复合磨损机制转变。  相似文献   

7.
采用热压成型工艺制备混杂纤维增强酚醛树脂基摩擦材料,在定速式摩擦试验机和万能试验机上研究了不同长石粉含量对材料摩擦磨损性能和力学性能的影响,借助扫描电子显微镜观察磨损表面形貌并分析其磨损机理。结果表明,长石粉的加入对材料的力学性能有明显改善,相比于无长石粉的材料,当长石粉质量分数为6%时,材料的弯曲强度、压缩强度、剪切强度和冲击强度和洛氏硬度分别提高17.76%,10.62%,15.75%,7.81%和5.24%,但密度降低6.34%。且长石粉质量分数为6%时摩擦材料摩擦磨损性能最佳,100℃时的摩擦系数高达0.51,且磨损率最低,为1.2×10-8cm3/(N·m);其磨损机制从200℃时的粘着磨损转变为300℃时的典型磨粒磨损。  相似文献   

8.
分别以未改性通用酚醛树脂、特殊改性刹车片专用酚醛树脂、腰果壳油改性酚醛树脂、丁腈橡胶改性酚醛树脂为黏结剂,玄武岩纤维、钢纤维为增强纤维制备四种酚醛树脂基摩擦材料。对试样进行物理性能、机械性能和摩擦磨损性能测试。结果表明,四种摩擦材料的密度相差不大,未改性通用酚醛树脂基摩擦材料的硬度符合刹车片使用要求,腰果壳油改性酚醛树脂基摩擦材料具有最佳的冲击强度和压缩强度;在摩擦过程中,腰果壳油改性树脂摩擦表面形成碳化膜,碳化膜的存在使摩擦材料的摩擦系数相对比较稳定,降低了磨耗量。研究表明,腰果壳油改性树脂基摩擦材料的综合性能最优。  相似文献   

9.
增强纤维种类和含量是影响汽车摩擦材料性能的重要因素,在同源配方中分别采用玄武岩纤维和玻璃纤维,测试了摩擦材料的摩擦系数、冲击强度、洛氏硬度性能。结果表明,质量分数为8%的玄武岩纤维摩擦材料比质量分数为8%的玻璃纤维摩擦材料的洛氏硬度可以提高33.8%,冲击强度提高7.45%,且摩擦性能相对稳定,磨损率低,是制备高性能摩擦材料替代玻璃纤维的优选原料。  相似文献   

10.
通过改变增强体纤维含量(10wt%~30wt%)研究其对新型摩擦材料的摩擦磨损性能的影响。通过定速摩擦性能试验机测试不同纤维含量材料的摩擦磨损性能;采用扫描电子显微镜观察试样磨后的微观形貌,进而分析其摩擦过程。结果表明:随混杂纤维含量的增加,各温度阶段的摩擦系数逐渐减小,磨损率总体呈现先降低后增大的趋势,纤维含量为10%~15%摩擦材料具有较高且稳定的摩擦系数和低磨损率。  相似文献   

11.
增强纤维含量对汽车摩擦材料性能的影响   总被引:5,自引:0,他引:5  
本文研究了不同体积百分数混杂纤维增强材料对汽车摩擦材料的摩擦、磨损性能及硬度、冲击强度和三点弯曲性能等指标的影响。结果表明,摩擦材料的冲击强度、三点弯曲断裂强度及硬度随纤维含量的增加而上升。纤维含量变化时,摩擦系数和磨损量变化较大,SEM 及EDX 分析表明,其机理与摩擦材料和对偶之间的转移膜的特性密切相关。在所研究的摩擦材料中,混杂纤维的含量以体积百分数10% 为最佳,此时材料有较高的摩擦系数和较低的磨损量,冲击强度、弯曲强度及硬度等性能指标都能达到使用要求。  相似文献   

12.
采用热模压成型方法制备了玄武岩纤维增强、多元填料改性的热固性聚酰亚胺复合材料,研究了复合材料的组织结构、摩擦磨损性能与磨损机制。结果表明:所制备的多元复合材料组织致密,玄武岩纤维和各填料分散均匀,硬度明显高于纯聚酰亚胺(PI)和玄武岩纤维改性聚酰亚胺(BF/PI)。摩擦磨损实验结果表明,多元复合材料具有优良的耐磨性能和摩擦稳定性,摩擦系数明显低于PI和BF/PI,磨损率分别较纯PI试样和BF/PI试样低约50.3%和19.9%。  相似文献   

13.
采用热压成型法制备有机制动摩擦材料,对所制备的摩擦材料进行摩擦磨损测试。研究填料硅酸锆和氧化铝的粒度对多纤维增强树脂基制动摩擦材料摩擦磨损性能的影响。研究结果表明,硅酸锆和氧化铝的加入可起到良好的增摩效果,随着填料粒度的细化,摩擦系数减小,但稳定性在粒度居中时最好,同时对磨损率也有一定影响。通过观察试样磨损后表面形貌探讨摩擦磨损机理。  相似文献   

14.
为了研究不同制动速度对碳纤维增强树脂基摩擦材料摩擦磨损性能的影响,通过制备短切纤维(DQ)、平纹布铺层(TB)和2.5D深交联机织物(SJ)三种碳纤维预制体结构增强酚醛树脂基摩擦材料,测试了三种摩擦材料在不同制动速度下的摩擦系数、磨损率及制动时间,并结合微观表面形貌和磨屑形貌讨论了摩擦材料的摩擦磨损机理。结果表明:在相同的制动速度下,材料的摩擦系数基本表现为SJTBDQ,深交联织物增强摩擦材料磨损量最低、制动时间最短。平纹布铺层和2.5D织物增强摩擦材料的摩擦系数受制动速度的变化影响较小,并稳定在0.35~0.45。随着制动速度的增加,短切纤维增强摩擦材料表面难以形成连续的摩擦膜,主要发生磨粒磨损;平纹布铺层和2.5D织物增强摩擦材料摩擦表面存在较完整的摩擦膜,磨损形式以粘着磨损为主。  相似文献   

15.
采用热压固化方法制备了一种新型无石棉有机(Non-asbestos organic:NAO)摩擦材料,研究了w(石墨)对摩擦材料力学性能和摩擦磨损性能的影响。结果表明,随着w(石墨)的增加,材料密度逐渐降低;材料的冲击强度先增大后减小,当w(石墨)=4%时材料的冲击强度达到最大值4.15kJ/m~2。摩擦和磨损性能测试结果表明,w(石墨)对摩擦材料的低温摩擦系数影响较小,对高温摩擦系数影响较明显。当w(石墨)=4%时可以有效提高摩擦材料的高温摩擦系数和高温抗磨损性能,且w(石墨)越高,材料高温磨损率越低。  相似文献   

16.
为研究碳粉粒度对腰果壳油改性酚醛树脂(PF)基摩擦材料性能的影响,采用热压成型工艺制备出4种不同碳粉粒度(48,25,18,9μm)的PF基摩擦材料,分别对摩擦材料的密度、硬度、压缩强度、冲击强度、热性能和摩擦磨损性能进行了测试。结果表明,碳粉粒度越小,摩擦材料的密度和硬度越高,力学性能越好,高温下的摩擦系数越稳定,且磨损率及200℃时的热膨胀系数越小,热稳定性能越好;当碳粉粒度为9μm时,摩擦材料密度为1.725 g/cm3,洛氏硬度值为92,压缩强度为109.8 MPa,冲击强度为3.72 k J/m2,350℃下的磨损率为1.12×10–7 cm3/(N·m),200℃下的线膨胀系数为1.55×10–5/℃,失重速率最大时的温度为441.3℃,750℃质量保持率为88.6%。摩擦材料中碳粉适宜的粒径为9μm。  相似文献   

17.
以丁腈橡胶改性酚醛树脂为基体,芳纶纤维、玻璃纤维为增强纤维,选用不同类型的纳米颗粒作为填料设计摩擦材料组分配比,并通过热压烧结制备摩擦材料。通过摩擦磨损试验机测试其在干摩擦条件下的摩擦学性能,并用扫描电镜(SEM)对材料的磨损形貌进行观察分析,以研究不同类型的纳米颗粒对摩擦材料性能的影响。研究表明:在干摩擦条件下,经过纳米颗粒改性的摩擦材料摩擦系数、硬度比未改性的材料有不同程度的提高,同时磨损率有很大程度的降低;纳米颗粒改性的摩擦材料摩擦系数、磨损率变化趋势具有一致性,均随着实验载荷、滑动速度的增大而逐渐减小;纳米颗粒改性后的摩擦材料磨损机理表现为疲劳磨损与磨粒磨损并存,而未改性的材料磨损机理主要表现为疲劳磨损。  相似文献   

18.
鲁张祥  宋歌 《中国塑料》2021,35(6):20-25
为了研究多种只由非金属混合组成的增强纤维对树脂基摩擦材料摩擦磨损性能的影响,以腰果壳油改性酚醛树脂(CNSL)为基体,按不同比例加入玻璃纤维、碳纤维和芳纶浆粕纤维,采用热压烧结技术制备摩擦材料。利用与高速钢配副的环块摩擦磨损试验机研究摩擦材料在不同制动工况下的摩擦磨损性能,并利用扫描电子显微镜分析了材料的磨损形貌。结果表明,玻璃纤维、碳纤维、芳纶浆粕纤维的体积比分别为4 %、10 %、3 %所组成的摩擦材料(P3)的硬度比其体积比分别是7 %、4 %、6 %的摩擦材料(P1)和其体积比分别是1 %、7 %、9 %的摩擦材料(P2)的硬度大;在不同的制动条件下,样品P1的摩擦因数最大,P3次之,P2最小,样品P3和P2的相对磨损率相似且比较稳定,约为样品P1的1~1/5,样品P3表现出最佳的摩擦学性能;摩擦材料和对偶材料的磨损形式主要为磨粒磨损。  相似文献   

19.
陶瓷纤维增强摩擦材料的性能研究   总被引:1,自引:0,他引:1  
采用热压成型工艺制备出陶瓷纤维增强改性酚醛树脂摩擦材料,分析了纤维长度对摩擦材料抗热衰退性能、耐磨性能和力学性能的影响,并借助扫描电子显微镜(SEM)观察了摩擦材料的断口形貌.结果表明,陶瓷纤维长度对摩擦材料的摩擦磨损性能和力学性能影响很大;在纤维用量不变的条件下,长陶瓷纤维代替短陶瓷纤维后,摩擦材料在各温度段下的摩擦系数增大,耐高温性和热衰退现象得到了明显改善,冲击强度和硬度得到显著提高,在长陶瓷纤维质量分数为10%时,摩擦材料的综合摩擦磨损性能最好;SEM分析表明,长陶瓷纤维与树脂基体之间的界面粘结强度比短陶瓷纤维高.  相似文献   

20.
研究了芳纶纤维增强丁腈橡胶(NBR)复合材料的物理机械性能和摩擦性能,并用扫描电子显微镜分析了芳纶纤维增强NBR复合材料的磨损表面和磨屑形貌。结果表明,芳纶的加入提高了NBR的拉伸强度;随着芳纶用量的增大,复合材料的扯断伸长率降低;芳纶的加入降低了NBR的摩擦系数和磨损率;当芳纶用量为20份时,复合材料的综合性能最佳。加入芳纶对NBR摩擦磨损形式的改变是NBR摩擦性能提高的重要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号