首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
吴明祥  毛琳明 《浙江电力》2012,(9):10-12,20
针对一起发生在高速铁路专用220 kV输电线路上的电缆终端击穿事故,进行了故障电缆终端检查和事故原因分析,指出220 kV故障电缆终端尾管与电缆金属护套的铅封施工工艺存在缺陷,直接降低了机械强度,引起电缆终端尾管与电缆金属护套分离,最终导致电缆终端尾管与主绝缘击穿,提出类似电缆终端的铅封施工工艺进行隐患排查的建议。  相似文献   

2.
对某一发生故障的110 kV电缆充油式复合套管终端进行解体分析,指出故障原因是金属护套与终端尾管连接处电化腐蚀造成接地不可靠,产生不间断放电,长期放电致使主绝缘老化,最终引起主绝缘击穿,并提出了预防类似故障的对策措施。  相似文献   

3.
介绍某地区220 kV电缆终端击穿故障情况,分析该电缆终端故障前运行状况及故障时终端外观情况,结合电缆终端解体检查结果,认为终端尾管封铅开裂是引发故障的主要原因,并提出相应的防范措施。  相似文献   

4.
介绍了5起35kV单芯电缆终端击穿故障的状况,从电缆终端制作工艺、电缆终端材料优化选择、电缆金属护套接地方式、电缆头红外线、紫外线成像检测等方面进行的现场分析实践,提出了改善单芯电缆金属护套接地方式,防止电缆头击穿的措施。  相似文献   

5.
笔者探讨了一起110 kV交叉互联电缆外护套及主绝缘烧损击穿事故的原因,计算和仿真了电缆在两种极端情况下金属护套的悬浮电位和电缆胶皮外护套悬浮电位之间的电位差,并根据事故电缆的实际状况给出了故障起因。结果表明:电缆金属护套只要形成中性点连接,即使在不接地的情况下其悬浮电位依然很低;在电缆金属护套和胶皮外护套石墨层均不接地的情况下,金属护套和石墨层悬浮电位接近运行电压,但此时电缆胶皮外护套承担的电压差仅几百伏,此种情况不会对电缆运行造成危害;文中分析过程为进一步深入理解电缆故障起因提供了新认识。  相似文献   

6.
分析高压XLPE电缆金属护套中环流的组成,介绍了电缆金属护套中电容电流、感应电势、感应电流的计算模型,比较了典型110kV、220kV高压电缆在单端接地和交叉互联接地两种接地方式下电缆金属护套环流的计算和实测结果,讨论了金属护套环流计算结果的影响因素。  相似文献   

7.
梁彦 《电世界》2010,(3):5-7
1事故经过2009年1月14日,仙衣滩电厂运行人员在巡视GIS开关站时,发现从2号主变至开关站的110kV电缆接人编号为1024的隔离开关电缆头C相有异味并冒烟,立即返回中控室停机进行处理。停机后,再次返回GIS开关站,发现该电缆头已经出现明火,马上使用灭火器扑灭。灭火后仔细观察,GIS电缆终端金属尾管与电缆外护套的连接处已被烧穿。  相似文献   

8.
传统高压单芯电缆设计分段长度偏短,导致电缆接头数量急剧增加,造成接头价格昂贵,工程投资随之上升,电缆运行的故障概率也相应提高.针对这一问题,开展高压输电线缆增加敷设段长对金属护套最大感应电压和护套环流的影响,并计算最大段长.基于瞬态电力系统仿真软件,对220 kV输电线缆在不同的接地方式、不同的排列方式下的金属护套感应...  相似文献   

9.
武利会 《广东电力》2009,22(5):67-69
为确定佛山供电局110kV良容线电缆终端主绝缘击穿的原因,对该电缆终端头进行解剖和材料切片检查分析。分析结果认为:施工不当造成电缆绝缘屏蔽层受损,引发电场畸变严重,是引起事故的主要原因;接头的安装工艺不当引起接头受潮和接触不良,加速了主绝缘击穿的进程。建议在多雨地区,接头铜尾管与铝波纹护套的密封连接采用搪铅方式。  相似文献   

10.
文中分析某220 kV变电站近区110 kV电缆终端运行中击穿接地故障和变电站3条220 kV出线跳闸事故,指出电缆终端应力锥在安装过程中损伤了主绝缘,绝缘材料在长期局部放电作用下发生劣化是发生击穿的原因。电缆故障后,因蓄电池组存在开路导致直流Ⅰ段母线失压,从而导致线路跳闸。最后针对跳闸原因提出了解决措施和建议。  相似文献   

11.
徐伟  郑志源 《广东电力》2014,(12):118-122
为限制电缆热伸缩时的轴向力及金属护套应变,以截面积为2500 mm^2的220 kV交联电缆为例,研究隧道内电缆蛇形敷设特性。在分析了初始蛇形弧幅、蛇形节距对电缆轴向力、金属护套应变的影响的基础上,确定了蛇形节距的取值范围,认为应综合考虑轴向力、施工误差和金属护套寿命等因素来确定初始蛇形弧幅。从隧道空间及支架荷载、立柱荷载等方面对垂直蛇形和水平蛇形敷设方式进行了比较,指出实践中应结合工程特点合理选择电缆蛇形敷设方式和参数。  相似文献   

12.
李俊 《湖北电力》2011,35(1):43-45
文章分析了110~220kV输电电缆线路中,因中间绝缘接头进潮引起单芯电缆金属护套环流过大的原因及危害,介绍了接头除潮工艺流程及应用,论证了接头除潮工艺解决因进潮引起高压单芯电缆金属护套接地环流问题的可行性.  相似文献   

13.
随桥电缆作为跨海输电系统的重要组成部分,其安全稳定运行对于整个输电系统的可靠性有重要影响。论文以舟岱大桥220 kV随桥电缆工程为研究对象,考虑架空线路的影响,基于PSCAD/EMTDC暂态仿真软件建立了随桥电缆-架空混合线路的仿真模型,对雷击故障和操作故障下的电缆护套过电压特性进行了研究。结果表明:雷击架空线路时,护套过电压幅值随击距的减小而增大,随杆塔接地电阻的增大而增大,过电压幅值最高可达到46.4 kV;单相接地故障下,接地相角为90° 时护套过电压最严重,过电压幅值最高可达到15.9 kV;非全相操作故障下,电缆护套过电压幅值受故障距离的影响不大,两相断线的护套过电压比单相断线更严重。研究工作为随桥电缆-架空混合线路的绝缘配合设计提供了参考依据。  相似文献   

14.
为了防止GIS的内部缺陷进一步发展造成事故,对GIS局部放电(局放)进行检测十分必要。笔者利用GIS特高频局放在线监测系统发现110 kV高新站110 kV GIS秀高Ⅰ线间隔有局部放电信号,并采取现场GIS局放带电测试、定位,以及进行一序列的开盖检查及缺陷排查,发现局放源位于110 kV高新站秀高Ⅰ线GIS A相电缆终端接头位置,最后更换了A相电缆终端接头后局放信号消失,避免了事故的发生,从而验证了GIS特高频局放在线监测系统检测GIS设备内电缆终端头故障的有效性,为较早地发现GIS内电缆终端头内部缺陷提供了有效检测方法和依据。  相似文献   

15.
针对珠海电厂220 kV电缆GIS终端故障,对电缆终端进行解剖检查,并结合实验室进行的试验和微观分析的结果,对故障原因作出了分析,判断出电缆部件中没有导致电缆系统击穿的因素,电缆头安装工艺质量不佳和相关部件老化是故障的主要原因,应该引起重视,由此提出了相应的防范措施。  相似文献   

16.
电缆线路实时在线三维监测管理系统以电网智能状态检修、事故分析及故障定位为目标,集成各种在线监测技术,对地下220 kV电缆线路、66 kV电缆线路及10 kV电缆线路的运行状态进行实时监测,实现异常情况及故障状态的预警和报警、设备健康状态的动态评估、各类信息的统计分析、基于三维实景的应急处置及推演、设备台帐信息及CAD数据管理等功能,同时实现管理模式从"事后处置"到"事前预警"、"粗放控制"到"状态评估"、"定期巡视"到"状态监视"的转变,对突发事件实现快速应急指挥。  相似文献   

17.
双回路同沟电缆-同塔架空线混合线路感应电压和感应电流的计算是检修时接地刀闸选型的关键。电缆回路间感应电压电流的计算不同于架空线路。电缆金属护套对线芯具有静电屏蔽作用,根据护套接地方式不同其对线芯也具有不同的电磁屏蔽效果。文中针对220 kV双回路电缆-架空线混合线路开展运行线路对检修线路的电磁感应研究。首先根据电磁耦合推导出混合线路的感应电压、电流计算公式。其次仿真计算分析,分别研究混合线路中电缆段长度占比的变化对感应电压电流的影响;电缆护套单端接地、双端接地以及交叉互联两端接地3种接地方式对于感应电流的影响;接地刀闸等效接地电阻对于感应电流的影响。结果可为混合线路接地刀闸选型提供理论计算参考。  相似文献   

18.
为降低高压电缆金属护套感应电压,通常在电缆交叉互联箱内将高压电缆金属护套进行交叉互联。但是由于电缆铺设环境的复杂性,交叉互联箱会出现受潮、进水、外力破坏等诸多情形,导致高压电缆金属护套出现交叉互联故障,给整个系统的安全运行埋下隐患。文章针对110k V XLPE高压电缆的交叉互联故障进行分析,利用ATP-EMTP电磁暂态软件进行建模和仿真,分析总结出不同故障下的接地电流变化特点,为高压电缆的故障检测提供理论依据。  相似文献   

19.
导体的集肤效应会影响导体的交流电阻,最终影响交流电缆的载流量,基于此,大截面导体通常采用分割导体的结构来降低交流电阻从而提高电缆的载流量。在此基础上对导体单丝表面进行绝缘处理也是降低导体交流电阻的手段之一,但IEC 60287标准中并未给出此类导体电缆的载流量计算方法。分别对220 kV电压等级导体单丝表面未处理的分割导体电缆和导体单丝表面绝缘处理过的分割导体电缆进行了空气中载流量测试,并参照IEC 60287考虑皱纹铝护套两侧空气间隙的影响,建立了220 kV电缆载流量计算方法。研究结果表明,载流量计算结果与试验结果偏差为0.74%,结果较为吻合。基于该方法对导体单丝表面处理后的分割导体的集肤效应系数进行了计算,文中所用导体单丝表面处理后分割导体的集肤效应计算所用因数ks为0.3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号