首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equilibrium surface tension, dynamic surface tension, and interfacial tension (IFT) of fatty alcohol ether sulfonates (CmEnSO) were measured to investigate their adsorption behavior. The effect of NaCl and CaCl2 concentrations on the IFT was also studied. The results showed that the number of EO units has no significant effect on the critical micelle concentration (CMC) and CMC decreases with increasing the length of the hydrophobic group. The surface tension at the CMC increases with the increase of the number of EO units and the length of the hydrophobic group. At dilute surfactant concentration, the adsorption process for CmEnSO is controlled by diffusion; at higher concentration, it becomes a mixed diffusion‐kinetic adsorption mechanism. The IFT between CmEnSO solution and dodecane remains around 10?1 mN/m over a wide range of electrolyte concentrations (NaCl concentration from 25 to 210 g/L, CaCl2 concentration from 0.1 to 10 g/L).  相似文献   

2.
The possibility and the prospect of cationic/anionic (“catanionic”) surfactant mixtures based on sulfonate Gemini surfactant (SGS) and bisquaternary ammonium salt (BQAS) in the field of enhanced oil recovery was investigated. The critical micelle concentration (CMC) of SGS/BQAS surfactant mixtures was 5.0 × 10−6 mol/L, 1–2 orders of magnitude lower than neat BQAS or SGS. A solution of either neat SGS or BQAS, could not reach an ultra-low interfacial tension (IFT); but 1:1 mol/mol mixtures of SGS/BQAS reduced the IFT to 1.0 × 10−3 mN/m at 100 mg/L. For the studied surfactant concentrations, all mixtures exhibited the lowest IFT when the molar fraction of SGS among the surfactant equaled 0.5, indicating optimal conditions for interfacial activity. The IFT between the 1:1 mol/mol SGS/BQAS mixtures and crude oil decreased and then increased with the NaCl and CaCl2 concentrations. When the total surfactant concentration was above 50 mg/L, the IFT of SGS/BQAS mixtures was below 0.01 mN/m at the studied NaCl concentrations. Adding inorganic salt reduced the charges of hydrophilic head groups, thereby making the interfacial arrangement more compact. At the NaCl concentration was above 40,000 mg/L, surfactant molecules moved from the liquid–liquid interface to the oil phase, thus resulting in low interfacial activity. In addition, inorganic salts decreased the attractive interactions of the SGS/BQAS micelles that form in water, decreasing the apparent hydrodynamic radius (DH, app) of surfactant aggregates. When the total concentration of surfactants was above 50 mg/L, the IFT between the SGS/BQAS mixtures and crude oil decreased first and then increased with time. At different surfactant concentrations, the IFT of the SGS/BQAS mixtures attained the lowest values at different times. A high surfactant concentration helped surfactant molecules diffuse from the water phase to the interfacial layer, rapidly reducing the IFT. In conclusion, the cationic-anionic Gemini surfactant mixtures exhibit superior interfacial activity, which may promote the application of Gemini surfactant.  相似文献   

3.
In this research, a star‐shaped surfactant was synthesized through the chlorination reaction, alkylation reaction and sulfonation reaction of triethanolamine, which is composed of three hydrophobic chains and three sulfonate hydrophilic groups. The critical micelle concentration (CMC) of the surfactant was measured by the surface tension method, and the results showed that it had high surface activity with CMC of 5.53 × 10?5 mol/L. The surfactant was superior in surface active properties to the reference surfactants SDBS and DADS‐C12. The interfacial tension (IFT) of the studied crude oil–water system (surfactant concentration 0.1 g/L, NaOH concentration 0.5 g/L, and experimental temperature 50 °C) dropped to 1.1 × 10?4 mN/m, which can fulfil the requirement of surfactants for oil displacement. An aqueous solution of the surfactant and crude oil was emulsified by shaking, which formed a highly stable oil‐in‐water (O/W) emulsion with particle size of 5–20 μm. The oil displacement effect was almost 12%.  相似文献   

4.
Three series of nonionic surfactants derived from polytriethanolamine containing 8, 10, and 12 units of triethanolamine were synthesized. Structural assignment of the different compounds was made on the basis of FTIR and 1H‐NMR spectroscopic data. The surface parameters of these surfactants included critical micelle concentration (CMC), surface tension at the CMC (γCMC), surfactant concentration required to reduce the surface tension of the solvent by 20 mN m?1 (pC20), maximum surface excess (Γmax), and the interfacial area occupied by the surfactant molecules (Amin) using surface tension measurements. The micellization and adsorption free energies were calculated at 25 °C.  相似文献   

5.
In this work, a novel series of zwitterionic gemini surfactants with different hydrophobic tails were synthesized and characterized. The physico‐chemical properties of these products (such as surface tension, oil/water interfacial tension, foaming ability, and the wetting ability of paraffin‐coated sandstone) were fully studied. The CMC of the synthesized surfactants ranged from 2.17 × 10?4 mol L?1 to 5.36 × 10?4 mol L?1 and corresponding surface tension (γCMC) ranged from 26.49 mN m?1 to 29.06 mN m?1, which showed excellent efficiency among the comparison surfactants. All the products can reduce the interfacial tension to a relatively low level of about 0.1–1.0 mN m?1. Additionally, results from applying different hydrocarbons suggested that the synergy will be clearer and oil/water interfacial tension will be lower if the oil components are similar to the surfactants. Contact angle and foaming measurements indicated that the surfactants exhibited good wetting and foaming abilities. The results of oil flooding experiments using an authentic sandstone microscopic model showed that C‐12 and CA‐12 could effectively improve the displacement efficiency by 21–29 %.  相似文献   

6.
The contact angles of saturated calcium dodecanoate (CaC12) solutions containing a second subsaturated surfactant on a precipitated CaC12 surface were measured by using the drop shape analysis technique. The subsaturated surfactants used were anionic sodium dodecylsulfate (NaDS), anionic sodium octanoate (NaC8), and nonionic nonylphenol polyethoxylate (NPE). Comparing at the critical micelle concentration (CMC) for each surfactant, NaC8 was the best wetting agent, followed by NaDS, with NPE as the poorest wetter (contact angles of 320, 420, and 620, respectively). Surface tension at the CMC increased in the order NaC8<NPE<NaDS, and subsaturated surfactant adsorption increased in the order NPE≪NaDS (1.4 vs. 84 μmole/g); adsorption of the NaC8 was not measurable. Interfacial tension (IFT) reduction at the solid-liquid interface due to subsaturated surfactant adsorption is an important contribution to contact angle reduction, in addition to surface tension reduction at the air-water interface. Surfactant adsorption onto the soap scum solid is crucial to solid-liquid IFT reduction and to good wetting. The fatty acid was the best wetting agent of the three surfactants studied, probably because calcium bridging with the carboxylate group synergizes surfactant adsorption onto the solid of the higher molecular weight soap. NaCl added to NaDS surfactant results in depressed CMC, lower surface tension at the CMC, decreased NaDS adsorption onto the solid, and decreased reduction in solid-liquid IFT. The contact angle is not dependent on the NaCl concentration for NaDS. The NaCl causes an increased tendency to form monolayers, which decrease air-water surface tension, but a decreased tendency to form adsorbed aggregates on the solid; the two trends offset each other, so wettability is not affected by added salt. The Zisman equation does not describe the wetting data for these systems well except for NaDS, further emphasizing the danger of ignoring solid-liquid IFT reduction in interpreting wetting data in these systems.  相似文献   

7.
The design, synthesis and interfacial behaviors of six asymmetric carboxyl betaine surfactants (BCm?n, m, n = 8, 10, 12, or 14, mn) derived from s‐triazine, which were prepared from cyanuric chloride, aliphatic amines, N,N‐dimethylpropane‐1,3‐diamine, followed by the reaction with sodium chloroacetate, are reported. The structures were confirmed by MS, 1H NMR and FT‐IR. Compared with symmetric surfactants (BCn?n, n = 8, 10, 12, or 14) we previously synthesized, the asymmetric series show superior surface activity. The γCMC of surfactants BC10?8, BC12?8, BC14?8 and BC12?10 is all below 30 mN/m. The minimum alkane carbon number of these ten surfactants is determined to be between 10 and 14. The interfacial behaviors between the alkanes and the solutions of triazine carboxyl betaine surfactants show that surfactants with a total carbon number in hydrophobic chains between 16 and 22 exhibit the ability to reduce the interfacial tension to an ultra‐low value (10?3 mN/m). The surfactants with longer hydrocarbon chains display strong affinity to the alkanes with longer chains.  相似文献   

8.
The interfacial tensions (IFT) of four low molecular weight groups of ethoxylated octylphenol-, dodecylphenol-, tetradecylphenol- and hexadecyl-phenol—formaldehyde polymeric surfactants were determined using the spinning drop method. Some noteworthy features of the interfacial behaviour of dilute aqueous solutions of 16 of these compounds and homologous hydrocarbons are discussed. An important feature is that these surfactants behave similarly to monomeric ones in their hydrocarbon scan, that is they have a minimum IFT value against a particular member of a homologous hydrocarbon series. The magnitudes of the tension at minimum (γmin) values obtained in this study are of the order of ‘ultralow’ (10?2-10?3 mNm?1). The nmin values of these polymeric nonionic surfactants decrease with increasing hydrophilicity, that is decrease with the increase of ethylene oxide units condensed per mole of alkylphenol unit in the polymeric surfactants studied. In this case, the downward shift in nmin is smaller and apparently not linearly related to the number of EO units. Increasing the hydrophobicity of these polymeric nonionics, that is increasing the length of the alkyl chain from C8 to C16, resulted in an increase in the nmin values obtained. For each of the investigated groups, the lowest γmin values are obtained with polymeric surfactants having the highest EO content. The optimum low tension performance occurs at the low end of the equivalent alkane carbon number scale (at EACNs below 6). Under the influence of added electrolytes these EACNs were shifted to higher values.  相似文献   

9.
In our previous report, the mixed cationic/anionic surfactant system consisting of N-dodecyl-N-methylpyrrolidinium bromide (L12) and sodium dodecyl sulfate (SDS) showed good interfacial tension (IFT) reduction of water/model oil (Vtoluene:V n-decane = 1:1). In the present study, the effects of divalent salts (MgCl2 or CaCl2) on the interfacial activity were systematically evaluated. The additional Mg2+ ions greatly reduced the IFT to an ultralow value, whereas Ca2+ ions caused the generation of the precipitates and resulted in increased IFT values. The precipitates disappeared in binary divalent salt solutions, and the IFT values remained at a low level. Based on the valence, polarizability, and hydrated radius of the ions, we proposed a model to explain the abnormal changes. The effects of NaCl and temperature were investigated to further verify our proposed mechanism. Moreover, the additional divalent salts obviously enhanced the stability of L12/SDS stabilized emulsions.  相似文献   

10.
A series of polyether-based silicone surfactants with different hydrophobic chains (trimethylsiloxy, triethylsiloxy, and triisopropylsiloxy) were synthesized. The molecular structures were confirmed using 1H nuclear magnetic resonance (NMR), 13C NMR, 29Si NMR, and fourier transform infrared spectroscopy (FT-IR). The effect of the siloxane groups on the physicochemical properties, surface tension (γ), critical micelle concentration (CMC), surface tension at the CMC (γCMC ), adsorption efficiency (pC20), surface pressure at the CMC (πCMC ), maximum surface excess (Γmax ), single silicone surfactant molecule at the air/water interface (Amin ), and the standard free energy of adsorption (), of the polyether-based silicone surfactants was investigated. Results indicate that the polyether-based silicone surfactants can reduce the surface tension of water to approximately 25–31 mN m−1 and the surface activity of silicone surfactants is enhanced with increasing branched trimethylsiloxyl and sterically hindered siloxane groups.  相似文献   

11.
In this study, interfacial tension (IFT) is measured between brine and crude oil (a sample of heavy oil from an Iranian oil reservoir) in the presence of two nonionic surfactants, KEPS 80 (Tween 80) and Behamid D, at different concentrations in order to optimize the concentrations of the surfactants. The surface response method is used to design the IFT measurement experiments. The experimental design and optimization is performed using the IFT as an objective function and temperature, concentration, and time as independent variables. In addition to the IFT measurement, various experiments such as stability tests of the surfactants in NaCl brine solutions, adsorption experiments on the carbonated rock surface, and phase behavior tests are performed to investigate the behavior of KEPS 80 and Behamid D in the enhanced oil recovery process. At the end, a model using the response surface statistical technique is designed for optimization of the concentrations of the surfactants, and a surfactant molecular migration mechanism is used for explanation of the dynamic IFT variation versus time. In the case of IFT experiments, the effect of surfactant concentration (at 1000, 3000, and 5000 ppm) on the dynamic IFT is investigated. The experiments are performed at four temperatures (25, 40, 50, and 67°C). The results show that the oil–brine IFT values can be reduced to about 4 mN m−1 in the presence of Behamid D and to about 1 mN m−1 in the presence of KEPS 80 at low concentrations.  相似文献   

12.
The dynamic interfacial tension (IFT) of ethoxylated fatty acid methyl ester solutions against n‐alkanes, kerosene, and diluted heavy oil have been investigated by spinning drop interfacial tensiometry. The influences of ethylene oxide (EO) groups and alkyl chain length on IFT were investigated. The experiment results show that the water solubility decreases with an increase in alkyl chain length or a decrease in EO groups. The ability to lower the interfacial tension against hydrocarbons improves with both increasing alkyl chain length and EO group at the best hydrophilic‐lipophilic balance, which can be attributed to the enhancement of the interfacial hydrophobic interactions and the rearrangement of interfacial surfactant molecules. The mixed adsorption of surfactant molecules and surface‐active components may reduce IFT to a lower value. C18=E3 shows the best synergism with surface‐active components. However, the IFT values against pure crude oil are obviously higher than those against hydrocarbons, which may be caused by the nature of heavy oil.  相似文献   

13.
Inspired by the concept of lipophilic and hydrophilic linkers, extended surfactants have been proposed as highly desirable candidates for the formulation of microemulsions with high solubilization capacity and ultralow interfacial tension (IFT), especially for triglyceride oils. The defining characteristic of an extended surfactant is the presence of one or more intermediate-polarity groups between the hydrophilic head and the hydrophobic tail. Currently only limited information exists on extended surfactants; such knowledge is especially relevant for cleaning and separation applications where the cost of the surfactant and environmental regulations prohibit the use of concentrated surfactant solutions. In this work, we examine surfactant formulations for a wide range of oils using dilute solutions of the extended surfactant classes sodium alkyl polypropyleneoxide sulfate (R-(PO) x −SO4Na), and sodium alkyl polypropyleneoxide-polyethyleneoxide sulfate (R-(PO) y -(EO) z −SO4Na). The IFT of these systems was measured as a function of electrolyte and surfactant concentration for polar and nonpolar oils. The results show that these extended surfactant systems have low critical micelle concentrations (CMC) and critical microemulsion concentrations (CμC) compared with other surfactants. We also found that the unique structure of these extended surfactants allows them to achieve ultralow IFT with a wide range of oils, including highly hydrophobic oils (e.g., hexadecane), triolein, and vegetable oils, using only ppm levels of these extended surfactants. It was also found that the introduction of additional PO and EO groups in the extended surfactant yielded lower IFT and lower optimum salinity, both of which are desirable in most formulations. Based on the optimum formulation conditions, it was found that the triolein sample used in these experiments behaved as a very polar oil, and all other vegetable oils displayed very hydrophobic behavior. This unexpected triolein behavior is suspected to be due to uncharacterized impurities in the triolein sample, and will be further evaluated in future research.  相似文献   

14.
Five new Gemini imidazolium surfactants were synthesized from imidazole and 1-bromoalkane (C8, C10, C12, C14, C16) to get 1-alkylimidazole, which was further reacted with 1,3-dichloropropan-2-ol to form the surfactant molecule, 1,1′-(propane-1,3-diyl-2-ol) bis(3-alkyl-1H-imidazol-3-ium) chloride. The structures of the five new surfactants and intermediates were characterized by 1H-NMR, 13C-NMR and IR spectra. Thermal properties of the five new surfactants were studied with thermogravimetric analysis and differential scanning calorimetry, the five new surfactants showed a transition from a crystalline phase to a thermotropic liquid–crystalline phase at around ca. 100 °C, which transformed to an isotropic liquid phase at around ca. 165 °C. The five new surfactants critical micelle concentrations (CMC) in the aqueous solutions were determined by surface tension and electrical conductivity methods. The surface tension measurements provided a series of parameters, including critical micelle concentration (CMC), surface tension at the CMC (γ CMC), adsorption efficiency  (pC 20), and effectiveness of surface tension reduction (πCMC). In addition, with application of the Gibbs adsorption isotherm, maximum surface excess concentration (Γmax) and minimum surface area/molecule (Amin) at the air–water interface were obtained. The parameters β (degree of counterion binding to micelles), ΔG ads θ (Gibbs free energy of adsorption), and ΔG mic θ (Gibbs free energy change of micellization) were also derived. The results indicated that the five new Gemini surfactants exhibited very low CMC and a good efficiency in lowering the surface tension of water. The foamability and foam stability of the five new surfactants were also examined at different CMC.  相似文献   

15.
The addition of surfactants to modify the surface property of nanoparticles (NPs) from hydrophilic to hydrophobic also enhances their interfacial properties. Several approaches were previously proposed to calculate the surface tension/interfacial tension (IFT) for different systems in the presence of NPs, surfactants, and electrolytes. However, most of these approaches are indirect and require several measured parameters. Therefore, a mathematical model is developed here to calculate the surface tension/IFT for these systems. The developed model takes into account the cohesive energy due to the interaction of the surfactant CH2 groups, the electric double layer effect due to the interaction among the ions of NPs, surfactants, and electrolytes, and the dipole–dipole interaction of NPs and electrolytes. The developed model is compared and validated with the laboratory experimental data in literature. The results reveal further understanding of the mechanisms involved in stabilization of oil/water emulsion in the presence of NPs, surfactants, and electrolytes.  相似文献   

16.
Gemini salts of linear alkylbenzene sulfonate (LABS) were prepared by neutralization of sulfonic acid with a series of low-molecular-weight diamines in aqueous solution. The equilibrium surface activity of Gemini salts of LABS was determined by measuring the surface tension as a function of surfactant concentration to determine the critical micelle concentration (CMC), surface tension at the CMC (γCMC), and the area per molecule at the air-water interface (Å2). Electrical conductivity was measured as a function of surfactant concentration to determine the CMC and counterion binding. Dynamic surface tension was measured using a bubble pressure tensiometer to infer the rate at which the surfactant migrates to the air-water interface. Equilibrium interfacial tension against mineral oil was measured using a spinning drop tensiometer. Dynamic interfacial tension was measured using a drop volume tensiometer. The surface tension, CMC, and interfacial tension of Gemini salts of LABS decreased compared to monovalent organic and inorganic salts. The CMC decreases with increasing molecular weight of the diamine spacer group. Dynamic surface and interfacial tension of Gemini salts of LABS are lower than monovalent salts. The foam volume of Gemini salts of LABS was determined using a high shear blender test. The foam volume of Gemini salts of LABS is lower than monovalent salts and depends on the size of the spacer group. Hard-surface cleaning was measured using artificial soil applied to white Formica tiles. Soil removal was determined by optical reflectance as a function of abrasion cycles. Gemini salts of LABS show reduced hard-surface cleaning performance compared to monovalent salts. Detergency of different types of soils on cotton and polyester/cotton fabric was determined by optical reflectance measurements. Gemini salts of LABS show improved cleaning performance compared to monovalent salts. Cleaning performance increases with increasing molecular weight of the diamine spacer group. In situ neutralization of LABS with organic diamines is a simple and efficient way to prepare anionic Gemini surfactants for industrial scale applications.  相似文献   

17.
The effect of synthetic surfactant molecular structure on the dynamic interfacial tension (DIFT) behavior in Na2CO3/surfactant/crude oil was investigated. Three surfactants, a nonionic (iC17(EO)13), an alcohol propoxy sulfate (C14–15(PO)8SO4), and sodium dodecyl sulfate (SDS) were considered in this study. Sodium tripolyphosphate (STPP) was added to ensure complete compatibility between brine and Na2CO3. In Na2CO3/iC17(EO)13/oil and Na2CO3/C14–15(PO)8SO4/oil systems, a strong synergistic effect for lowering the dynamic interfacial tension was observed, in which the dynamic IFT are initially reduced to ultralow transient minima in the range 1.1 × 10?3–6.6 × 10?3 mNm?1 followed by an increment to a practically similar equilibrium value of 0.22 mNm?1 independent of Na2CO3 concentration (for iC17(EO)13) and to decreasing equilibrium values with increasing alkali concentrations (for C14–15(PO)8SO4). The observed difference in the equilibrium IFT for the two systems suggest that in both systems, the mixed interfacial film is efficient in reducing the dynamic interfacial tension to ultralow transient minima (~10?3 mNm?1) but the mixed film soap‐iC17(EO)13 is much less efficient than the mixed film soap‐C14–15(PO)8SO4 in resisting soap diffusion from the interface to the bulk phases. In both systems, the synergism was attributed, in part, to the intermolecular and intramolecular ion–dipole interactions between the soap molecules and the synthetic surfactant as well as to some shielding effect of the electrostatic repulsion between the carboxylate groups by the nearby ethylene oxide (13 EO) and propylene oxide (8 PO) groups in the mixed interfacial monolayer. SDS surfactant showed a much lower synergism relative to iC17(EO)13 and C14–15(PO)8SO4, probably due to the absence of ion–dipole interactions and shielding effect in the mixed interfacial layer at the oil–water interface.  相似文献   

18.
A series of carboxylic ester‐containing imidazolium‐based zwitterionic surfactants, namely, monoalkyl 2‐(3‐methylimidazolium‐1‐yl) succinate inner salts (CnMimSU, n = 8, 10, 12 and 14), have been synthesized. Their structures were confirmed by 1H NMR, 13C NMR and FTIR. The typical physicochemical properties parameters such as isoelectric point, critical micelle concentration (CMC), surface tension at CMC (γCMC), surface pressure at CMC (ΠCMC), adsorption efficiency (pC20), the maximum surface excess (Γm), the minimum molecular cross‐sectional area (Amin) and the value of CMC/C20 were determined. The effect of the long‐chain length on the important physicochemical properties of CnMimSU was studied. It is found that the surface activity of CnMimSU is enhanced with the long‐chain length increases.  相似文献   

19.
A series of novel cationic gemini surfactants with rigid amido groups inserted as the spacers, named C 12 ‐PPDA‐C 12 , C 14 ‐PPDA‐C 14 and C 16 ‐PPDA‐C 16 , were synthesized by a two‐step reaction with dimethyl terephthalate, N,N‐dimethyl propylene diamine and alkyl bromide as raw materials. The chemical structures of the prepared compounds were confirmed by IR, 1H and 13C NMR and element analysis. Surface activity properties of the synthesized compounds were investigated by surface tension, electrical conductivity and fluorescence. Increasing the number of carbon atoms in the hydrophobic alkyl chain, decreased the critical micelle concentration (CMC), surface tension at the CMC and the minimum surface area. Other relevant properties including foaming ability and emulsion stability were investigated. The results indicated that the synthesized gemini surfactants possess good surface properties, emulsifying properties and steady foam properties.  相似文献   

20.
《Fuel》2006,85(12-13):1815-1820
The surface tensions of various surfactant aqueous solution and the dynamic interfacial tensions between the Shengli oil field of China crude oil and the solution of novel surfactants, a series of single-component alkylmethylnaphthalene sulfonates (AMNS) including various the length of alkyl chains (hexyl, octyl, decyl, dodecyl and tetradecyl, developed in our laboratory), were measured. It is found that synthesized surfactants exhibited great capability and efficiency of lowering the solution surface tension. The critical micelle concentrations, CMC were: 6.1–0.018×10−3 mol L−1, and the surface tensions at CMC, γCMC were: 28.27–35.06 mN m−1. It is also found that the added surfactants are greatly effective in reducing the interfacial tensions and can reduce the tensions of oil–water interface to ultra-low, even 10−6 mN m−1 at very low surfactant concentration without alkali. The addition of salt, sodium chloride, results in more effectiveness of surfactant in reducing interfacial tension and shows that there exist obviously both synergism and antagonism between the surfactant and inorganic salt. All of the synthesized surfactants, except for hexyl methylnaphthalene sulfonate, can reduce the interfacial tension to ultra-low at an optimum surfactant concentration and salinity. Especially Tetradec-MNS surfactant is most efficient on lowering interfacial tension between oil and water without alkaline and the other additives at a 0.002 mass% of very low surfactant concentration. Both chromatogram separation of flooding and breakage of stratum are avoided effectively, in addition to the less expensive cost for enhanced oil recovery, and therefore it is a good candidate for enhanced oil recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号