首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
开发了一种以过氧叔丁醇为氧化剂,乙酰丙酮钒为催化剂的合成3-氧代-a-紫罗兰酮的方法。主要探讨了氧化剂用量、催化剂用量、溶剂、温度对反应的影响。得出3-氧代-a-紫罗兰酮的有利合成条件是-a-紫罗兰酮1.92g(10mmol)·VO(acac)2 0·13g(0.5mmol),过氧叔丁醇50mmol,在35℃下于10mL丙酮中反应6h,3-氧代-a-紫罗兰酮的产率达到58%,纯度高于98%。  相似文献   

2.
开发了一种以过氧叔丁醇为氧化剂,乙酰丙酮钒为催化剂合成4-氧代-β-紫罗兰酮的方法。主要探讨了氧化剂用量、催化剂用量、溶剂、温度对反应的影响。得出4-氧代-β-紫罗兰酮的有利合成条件是β-紫罗兰酮1.92g(10mmol),VO(acac)20.13g(0.5mmol),过氧叔丁醇50mmol,在35℃下于10mL丙酮中反应6h,4-氧代-β-紫罗兰酮的产率达到68%,纯度高于98%。  相似文献   

3.
在吡啶溴翁和吡啶氯翁离子液[Epy]Br、[Bpy]Br和[Bpy]Cl中,以氯化亚铜为催化剂,叔丁基过氧化氢为氧化剂,可以直接-β-紫罗兰酮选择性氧化合成4-氧代-β-紫罗兰酮,收率可达55%。该方法使用了无毒的氧化剂和催化剂,反应介质和催化剂氯化亚铜可回收再利用,因此是一种有效和环境友好的合成氧代-β紫罗兰酮的方法。  相似文献   

4.
方嵩  韩磊  马刚 《广州化工》2013,(10):115-117
以α-紫罗兰酮为原料,通过氧化和还原2步反应合成了目标物质:3-氧代-α-紫罗兰醇,在原有合成方法的基础上减少了合成步骤,并且通过优化反应条件,寻找合适的反应的条件,能够提高反应产率,比文献值要高出15%。产物通过红外和核磁进行表征确认是需要的目标物质。  相似文献   

5.
研究了以N,N,N-三羟基异腈尿酸(THICA)和Cu(AcAc)2为催化剂,分子氧氧化β-紫罗兰酮,一步反应制备4-氧代-β-紫罗兰酮的工艺;在反应温度为45℃,投料比为n(β-紫罗兰酮):n(THICA):n[Cu(AcAc)2]=100:10:1,反应5h就能完成,收率为78.2%;并对氧化机理进行了研究。  相似文献   

6.
以α-紫罗兰酮为原料,经烯丙位氧化、选择性还原得到3-氧代-α-紫罗兰醇,3-氧代-α-紫罗兰醇与溴代四乙酰葡萄糖反应得到3-氧代-α-紫罗兰醇-四乙酰基-β-D-葡萄糖苷,最后脱去乙酰基得到3-氧代-ɑ-紫罗兰醇-β-D-葡萄糖苷。目标化合物经IR、~1 H NMR,~(13)C NMR,MS表征。  相似文献   

7.
《广东化工》2021,48(13)
以β-紫罗兰酮为原料,氯酸钠为氧化剂,碘化钾为催化剂,盐酸或氢溴酸为氢离子供体,添加二氧化锰作为稳定剂,在20~45℃下反应并控制体系p H1.0,氧化制备得到目标产物4-氧代-β-紫罗兰酮。反应液经碱液洗涤后得到棕黄色粗产物,粗产物在惰性溶剂中结晶可得到黄色固体,也可经减压蒸馏得到淡黄色粘稠液体,产物GC含量90%~95%,平均收率约65%。  相似文献   

8.
黄红  丁蕙  杨始刚 《化学世界》2011,52(5):299-302
以叔丁基过氧化氢(TBHP)和次氯酸钠氧化α-紫罗兰酮,得到关键中间体3-氧代-α-紫罗兰酮(1),同时,进行了条件试验,最佳条件为:在室温条件下,无水乙腈和K2CO3中,n(α-紫罗兰酮):n(TBHP):n(NaCIO)为1:8:3时,反应得到产物,最佳得率为50.9%.产物再经硼氢化钠选择性还原得氧代紫罗兰醇,经...  相似文献   

9.
采用N-羟基-邻苯二甲酰亚胺(NHPI)和乙酰丙酮亚钴(Co(AcAc)_2)作催化剂,分子氧氧化β-紫罗兰酮一步反应制备4-氧代-β-紫罗兰酮,收率达70%。以~1H-NMR、~(13)C-NMR、GC-MS、IR、元素分析仪对其进行表征。  相似文献   

10.
杨始刚  黄红 《广州化工》2010,38(10):17-19,36
3-和4-氧代紫罗兰醇糖苷是一种糖苷类香料前体,用经典的Koenigs-Knorr法,溴代乙酰糖分别与3-氧代-α-紫罗兰醇和4-氧代-β-紫罗兰醇反应可得到3-氧代-α-紫罗兰醇糖苷和4-氧代-β-紫罗兰醇糖苷。详细地说明了3-氧代-α-紫罗兰醇和4-氧代-β-紫罗兰醇的各种合成方法,综述了香料前体3-氧代-α-紫罗兰醇糖苷和4-氧代-β-紫罗兰醇糖苷的合成研究进展。  相似文献   

11.
以β-紫罗兰酮为原料,先在催化剂作用下通氧气氧化,再与盐酸羟胺反应得到二肟基紫罗兰酮,在酸作用下水解为重要的医药化工中间体4-氧代-β-紫罗兰酮。  相似文献   

12.
微波辐射法合成α-紫罗兰酮的研究   总被引:6,自引:0,他引:6  
以柠檬醛和丙酮为原料,在微波辐射条件下,经缩合反应合成了假性紫罗兰酮,再经环化反应合成了α-紫罗兰酮。重点探讨了催化剂的种类和用量、反应物配比、微波辐射时间和功率等因素分别对缩合和环化反应的影响,确定了在微波辐射下合成α-紫罗兰酮的工艺条件:缩合反应以KF/Al2O3为催化剂(与柠檬醛的质量比为1∶1),n(柠檬醛)∶n(丙酮)=1∶10,90 W微波辐射12 min;环化反应以固体硫酸氢钠作催化剂,其用量为0.287 g,60 W微波辐射5 min。与无微波辐射条件的合成方法相比,此法大大缩短了反应时间,简化了制备工艺流程,而且假性紫罗兰酮产率由92.6%提高到98.3%,α-紫罗兰酮的产率由60.0%提高到70.1%。  相似文献   

13.
紫罗兰酮的合成   总被引:3,自引:0,他引:3  
一、引言紫罗兰酮(Ionone)是一种高级香料,我国需要量很大。过去完全依靠进口,大部分用为紫罗兰系调合香料的基础,应用于上等香皂和化妆品中香料的调合,及为合成维生素甲的中间物。紫罗兰酮为一淡黄色液体,有α-型及β-型二种异构体。α-型的香气较β-型的甜而清,但均与紫罗兰叶或紫罗兰花的香气相近似;其稀溶液具有浓烈的紫罗兰花香。二、原料的选择根据文献记载:紫罗兰酮一般由柠檬醛(Citral)合成而得。柠檬醛来源很多,天然存在于:(1)山苍籽油(Litsea citrata oil)又名本姜子油,含柠檬醛60~90%;(2)柠檬草油(Lemon-grass oil),又名疯茅油,含柠檬醛70~80%;(3)柠檬油(Lemon oil),含柠檬醛约4~6%;(4)马鞭草油(Verbena oil)又名桃  相似文献   

14.
固体酸催化剂可成为制备紫罗兰酮的环境友好型催化剂,综述金属盐、阳离子交换树脂、固体超强酸、分子筛和杂多酸等固体酸在催化假紫罗兰酮环化反应中的应用,固体超强酸是目前的研究热点,存在易失活、不易保存和稳定性不足等问题。通过对催化剂载体改性、加入其他金属或氧化物形成多组元固体超强酸、引入稀土元素或特定的分子筛改性制备固体超强酸以及引入纳米级金属氧化物制备出纳米型固体超强酸等,这些均可为催化剂提供合适的比表面积、增加酸中心密度、增加酸种类型、增加稳定性和提高机械强度。  相似文献   

15.
紫罗兰酮是重要的香料之一,又是合成維生素甲的原料,我国已能生产,其方法是以山蒼籽油为原料,利用其有效成分擰檬醛(70%以上)和丙酮在碱的存在下进行縮合生成假紫罗兰酮,再在酸的作用下环化而为紫罗兰酮。由于野生植物的精油,受許多因素所局限,易于影响紫罗兰酮的計划生产和产量,因此探求其他原料来合成具有紫罗兰酮香型的类似产品,应用于香料工业,以便使更多的紫罗兰酮应用于維生素甲的合成,实是  相似文献   

16.
改进了山苍子油合成α-紫罗兰酮的方法,在缩合反应中直接用固体氢氧化钠作缩合剂,反应3h,假紫罗兰酮产率达92.87%;在环化反应中以未经真空分馏的假紫罗兰酮粗品为原料,加入苯作溶剂,反应1.5h,α-紫罗兰酮产率达87.87%。  相似文献   

17.
从山苍子油直接合成α—紫罗兰酮   总被引:6,自引:0,他引:6  
本文改进了山苍子油合成α-紫罗兰酮的方法,在缩合反应中直接用固体氢氧化钠作缩合剂,反应3小时,假紫罗兰酮产率达92.87%,在环化反应中直接以未经真空分馏的假紫罗兰酮粗品为原料,加入苯作溶剂,反应1.5小时,α-紫罗兰酮产率达87.87%。  相似文献   

18.
用山苍子油直接合成α—紫罗兰酮   总被引:1,自引:0,他引:1  
  相似文献   

19.
从山苍子油直接合成α-紫罗兰酮   总被引:4,自引:1,他引:4  
本文改进了山苍子油合成α-紫罗兰酮的方法。在缩合反应中直接用固体氢氧化钠作缩合剂,反应3小时,假紫罗兰酮产率达92.87%;在环化反应中直接以未经真空分馏的假紫罗兰酮粗品为原料,加入苯作溶剂,反应1.5小时,α-紫罗兰酮产率达87.87%。  相似文献   

20.
《广东化工》2021,48(18)
以芳香酮为原料,利用NaBr/H_2O_2和NBS/TsOH两种溴代体系,以较高的收率合成了一系列α-溴代芳香酮,该反应体系表现出了非常好的官能团兼容性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号