首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Selective laser melting technology is used to manufacture porous and solid AZ91D alloys. The effects of laser power and hatch spacing on the density, blowholes, microstructure and mechanical properties of AZ91D alloy are studied. The laser power and hatch spacing play a significant role in the density and blowholes of AZ91D specimens. The grains size of specimens increases from 1 μm–2 μm to 8 μm–10 μm from the bottom to the top in single molten pool. Compared with grain size of die‐casting alloy (30 μm), that of selective laser melted gets refinement. There is no significant change in microstructure in the bottom, middle and top of specimens. The micro‐hardness of AZ91D alloy, reaching up to 115.3 HV 0.1, is superior to that of die‐casting alloy (56 HV 0.1). The compression properties of porous and solid specimens reach the degree of die‐casting solid magnesium alloy. AZ91D alloy shows the potential in the application of medical biodegradable materials.  相似文献   

2.
The use of porous structures is gaining popularity in biomedical implant manufacture fields due to its ability to promote increased osseointegration and cell proliferation. Selective laser melting (SLM) is a metal additive manufacturing (MAM) technique capable of producing the porous structure. Adjusting the parameter of scan line spacing is a simple and fast way to gain porous structures in SLM process. By using the medical alloy of Ti6Al4V, we systematically study the influence of the scan line spacing on pore characteristics and mechanical properties of porous implant for the first time. The scanning electron microscope (SEM) results show that the porous Ti6Al4V implants with interconnected pore sizes which ranges from 250 to 450 μm is appropriate for compact bone. The compression strength and modulus of the porous Ti6Al4V implants decrease with the increase of the scan line spacing, and two equations by fitting the data have been established to predict their compression properties. The compressive deformation of the porous Ti6Al4V implants presented an adiabatic shear band (ASB) fracture, which is similar to dense Ti6Al4V owing to the dense thin wall structures. The ability to create both high porosity and strong mechanical properties implants opens a new avenue for fabricating porous implants which is used for load-bearing bone defect repair and regeneration.  相似文献   

3.
激光冲击处理对Ti6Al4V力学性能的影响   总被引:3,自引:0,他引:3  
通过对钛合金Ti6Al4V的激光冲击处理,研究了激光冲击处理工艺对钛合金Ti6Al4V力学性能的影响.实验表明:激光冲击处理能有效提升Ti6Al4V的力学性能,在激光功率密度由1.15GW/cm2增加到2.31GW/cm2过程中,其冲击波峰值压力线性增加,表面最大残余压应力也相应增大,最高达-264MPa,表面硬化层的显微硬度高达510Hv,硬化层深度约为0.25mm,经过激光冲击处理后硬度相对于原始钛板提高了64%,随着激光能量的增加,冲击区域的抗拉强度极大增强,塑性降低.  相似文献   

4.
Selective laser melting (SLM) has provided an alternative to the conventional fabrication techniques for Ti-6Al-4V alloy parts because of its flexibility and ease in creating complex features. Therefore, this study investigated the effects of the process parameters and heat treatment on the microstructure and mechanical properties of Ti-6Al-4V fabricated using SLM. The influences of various process parameters on the relative density, tensile properties, impact toughness, and hardness of Ti-6Al-4V alloy parts were studied. By employing parameter optimization, a high-density high-strength Ti-6Al-4V alloy was fabricated by SLM. A relative density of 99.45%, a tensile strength of 1 188 MPa, and an elongation to failure of 9.5% were achieved for the SLM-fabricated Ti-6Al-4V alloy with optimized parameters. The effects of annealing and solution aging heat treatment on the mechanical properties, phase composition, and microstructure of the SLM-fabricated Ti-6Al-4V alloy were also studied. The ductility of the heat-treated Ti-6Al-4V alloy was improved. By applying a heat treatment at 850 ℃ for 2 h, followed by furnace cooling, the elongation to failure and impact toughness were found to be increased from 9.5% to 12.5%, and from 24.13 J/cm2 to 47.51 J/cm2, respectively.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-022-00389-y  相似文献   

5.
为了提高电动机用激光选区熔融(SLM)制备Ti6Al4V合金的拉伸力学综合性能,通过控制变量的方式研究Ar气流量对其微观组织和拉伸力学性能的影响。研究结果表明:所有Ti6Al4V合金都形成了α’白色组织,控制Ar气流量为6 L/min有助于马氏体发生原位分解。此时形成了大量的α’组织以及部分αβ相,所有组织的宽度都接近0.5μm。在Ti6Al4V合金中形成了具有密排六方晶格的α组织,在SLM成形阶段存在大量α’组织转变成(α+β)结构的情况。Ar气流量为6 L/min下合金达到了更高延伸率。当能量密度增大到6 L/min之后,靠近撕裂棱区域产生了数量更多的韧窝,表明提高能量密度能够优化合金韧性,此时断口组织上产生韧窝没有出现解离面。该研究对优化SLM制备钛合金的工艺参数具有一定的理论意义。  相似文献   

6.
D. Krupa  J. Baszkiewicz  A. Barcz  A. Biliński 《Vacuum》2007,81(10):1310-1313
The corrosion resistance and bioactivity of Ti6Al4V alloy after calcium-ion implantation were examined. Polished samples were implanted with a dose of 1017 Na+/cm2 at a beam energy of 25 keV. The chemical composition of the surface layer formed during the implantation was determined by XPS and SIMS. The bioactivity of the samples was evaluated by soaking them in a simulated body fluid (SBF) at 37 °C for 168 and 720 h. The corrosion resistance in SBF at 37 °C was determined by electrochemical methods after exposure in SBF for various times. The surfaces of the samples before and after examinations were observed by optical microscopy, SEM-EDS and AFM.The results of the corrosion examinations indicated that under stationary conditions and after short-term exposures, the calcium-ion implanted titanium alloy had an increased corrosion resistance, but during the anodic polarization, calcium-implanted samples underwent pitting corrosion. The microscopic observations show that the precipitations of calcium phosphates are present on the surface, but they do not form a continuous layer.  相似文献   

7.
Samples of Ti6Al4V alloy were ceramic conversion (CC) treated. The fatigue properties of untreated and CC treated samples were evaluated with a conventional Wöhler cantilever rotating-bending fatigue machine under both plain fatigue and fretting fatigue conditions. Experiment results showed that CC treatment had a detrimental effect on plain fatigue properties and reduced the plain fatigue limit of the investigated Ti6Al4V alloy by about 24%. However, the fatigue property loss could be fully recovered by an additional shot peening after CC treatment. More importantly, shot peening after CC treatment resulted in considerably longer fatigue life over untreated and CC treated materials in the finite-life region. In contrast to its detrimental effect on plain fatigue, CC treatment appeared to be beneficial to fretting fatigue property. It increased fretting fatigue strength (FFS at 107 cycles) of the Ti6Al4V alloy by approximately 10%. Shot peening after CC treatment further enhanced the fretting fatigue properties, with an improvement in FFS (107 cycles) of about 20% over the untreated material under the present treatment and testing conditions.  相似文献   

8.
The study has explored the physical and chemical properties of nickel-boron/nano-diamond composite coatings upon pre/post heat treatment. The nano-composite coatings were produced by electroless plating. In fact, the effects of using the nano-diamond additives (0 g l−1, 0.1 g l−1, 0.3 g l−1, 0.5 g l−1, 0.7 g l−1) were investigated in pre/post heat treatment. According to the results, the micro-hardness of the nickel-boron/nano-diamond composite coating produced in the bath containing 0.5 g l−1 nano-diamond additive reached to 1005 HV 0.05 upon post-heat treatment. Also, the corrosion resistance of the nickel-boron/nano-diamond composite coatings was modified by using the nano-additive or heat treatment. But, adding nano-diamond particles reduced the ductility and wear resistance of the nickel-boron coatings. We also found, modification of the properties (ductility and wear resistance) of the composite coatings was achieved by using the heat treatment.  相似文献   

9.
采用激光加工技术在Ti6Al4V表面分别加工直线、网格和具有规则点阵状结构的表面纹理,采用自组装技术制备自组装分子膜。采用扫描电镜、形貌分析仪和接触角测量仪对成膜后的钛合金表面进行形貌和接触角的表征与测量。结果表明,通过激光加工和沉积自组装分子膜,可显著增大Ti6Al4V的水接触角。其中直线纹理的试样表面水接触角可达124.8°,网格纹理的试样表面接触角可达126.1°,点阵状纹理的试样表面接触角可达151.6°。表面接触角与表面粗糙度相关,随着表面粗糙度值的增大,接触角呈增大趋势,当表面粗糙度>4μm时,接触角均>150°,形成超疏水表面。  相似文献   

10.
This article examines the microstructure and tensile strength of annealed Ti6Al4V alloy at different temperatures and times. Taguchi based L9 (32) design was used for the experimental design matrix and optimization of the tensile strength of heat treated samples. The optimum parameter combination was at the temperature of 950 °C and soaking time of 1 hour. ANOVA results show that temperature is the most influencing parameter and a regression equation of degree two was developed to predict tensile strength. Results of the microstructure show lamellar structure development within the samples heat-treated at 1000 °C.  相似文献   

11.
置氢Ti6Al4V合金的微观组织演变规律   总被引:2,自引:0,他引:2  
为研究置氢Ti6Al4V合金的高温加工改性机理,从微观组织的角度对合金进行了对比分析.利用OM、SEM、XRD等研究了置氢对Ti6Al4V合金变形前后微观组织演变的影响.研究结果表明:氢的加入不仅使置氢Ti6Al4V合金中β相比例明显增大,而且改变了α相与β相之间的电势差,在氢含量为0.3%~0.5%两相颜色将发生互换,氢含量增加到0.50%以上时,合金中将出现面心立方结构的δ氢化物;随氢含量的增加,合金超塑拉伸变形后的组织由α+β两相等轴晶粒变为粗大的β晶粒,造成α与β界面的协调能力下降,并改变了合金的变形机制.  相似文献   

12.
Residual stress fields dynamically fluctuate throughout the manufacturing process of metallic components and are caused by local misfit of a thermal, mechanical or metallurgical nature. Recent advances have been made in the area of microstructure and residual stress prediction; yet few have considered dual-phase titanium alloys. The aim of the work presented was to carry out a review of the existing state-of-the-art in residual stress modelling with an intended application to industrial heat treatment of Ti–6Al–4V alloy. Four areas were evaluated: thermal, mechanical and metallurgical sub-models, and model validation via residual stress measurement. Recommendations for future research include further investigation of transformation induced plasticity and stress relaxation behaviour in Ti–6Al–4V.

This review was submitted as part of the 2019 Materials Literature Review Prize of the Institute of Materials, Minerals and Mining run by the Editorial Board of MST. Sponsorship of the prize by TWI Ltd is gratefully acknowledged.  相似文献   


13.
为提高Ti6Al4V合金的高温摩擦学性能,采用激光熔覆技术在其表面原位合成多相混杂金属基高温自润滑耐磨复合涂层,熔覆粉末的成分为Ni60-16.8%TiC-23.2%WS_2(质量分数,下同),系统地研究复合涂层的显微组织、物相结构及其在20,300,600,800℃下的摩擦学性能和相关磨损机理。结果表明:复合涂层的显微硬度(701.88HV0.5)约为基体(350 HV0.5)的2倍;由于原位合成固体润滑相(Ti_2SC/TiS/NiS/TiO/TiO_2/NiCr_2O_4/Cr_2O_3)和硬质相(W,Ti)C1-x/TiC/Cr_7C_3的协同作用,复合涂层的耐磨减摩性能明显优于基体。随着温度升高,涂层和基体的摩擦因数和磨损率均呈下降趋势,在800℃时复合涂层和基体的摩擦因数分别为0.32和0.43,磨损率分别为1.80×10-4,2.92×10-5mm/Nm。在800℃下塑性变形、分层和氧化磨损为基体主要磨损机理,复合涂层以氧化磨损和轻微的黏着磨损为主。  相似文献   

14.
研究Ti、Ti6Al4V和Ti6Al7Nb 3种钛金属表面经喷砂酸蚀处理后的表面形貌、亲水性及对成骨细胞生物活性的影响。在Ti、Ti6Al4V和Ti6Al7Nb 3种钛金属表面进行Al2O3喷砂和盐酸、硫酸混合物酸蚀的表面改性处理(SLA),通过扫描电子显微镜(scanning electron microscope,SEM)观察样品的表面形貌,通过接触角测量仪在显微镜下测量接触角的大小;将SD大鼠成骨细胞以1×104cells/m L密度接种于Ti、Ti6Al4V和Ti6Al7Nb表面后通过MTT活性实验观察成骨细胞在样品表面的增殖,通过SEM观察细胞在样品表面生长的形态,通过碱性磷酸酶(AKP)活性实验,检测成骨细胞的分化能力。Ti、Ti6Al4V和Ti6Al7Nb在经过喷砂酸蚀处理后,表面均呈现出微米级多孔形貌,3种样品均为亲水性表面;细胞在SLA处理后的Ti、Ti6Al4V和Ti6Al7Nb表面增殖良好,细胞伸展显著;其中在Ti6Al7Nb表面细胞的增殖、黏附、分化能力最强。大颗粒喷砂酸蚀技术的表面处理方法能够促进Ti、Ti6Al4V和Ti6Al7Nb的生物活性;经SLA处理的Ti6Al7Nb比Ti和Ti6Al4V表现出更好的生物学活性,成骨细胞在其表面呈现出更好的增殖、黏附及分化能力。  相似文献   

15.
采用金相分析和拉伸测试等方法,分析了激光熔化成形Ti6Al4V试样在不同沉积高度、不同方向截面的组织和性能。结果表明,平行于沉积方向的截面其组织类似柱状晶,具有较弱的织构特征;垂直于沉积方向的截面其组织为块状结构,具有较强的织构特征。选区激光熔化成形Ti6Al4V合金在沉积高度方向上的力学性能受柱状晶尺寸的影响,随着沉积高度的增大其抗拉强度和屈服强度先降低后升高而延伸率先提高后降低。织构和熔合不良等缺陷,使试样垂直于沉积方向上的强度和塑性都比平行于沉积方向的试样高。  相似文献   

16.
利用连续波2kW Nd-YAG激光在Ti6Al4V合金表面原位制备TiN枝晶增强梯度金属基复合材料表面层,并研究了该表面层的显微组织和磨损性能。结果表明:该表面层沿激光熔化深度具有明显的梯度结构,表面层与Ti6Al4V基体之间呈现良好的冶金结合,Ti6Al4V的表面硬度及耐磨性得到了显著增强.  相似文献   

17.
Abstract

Isothermal compression of hydrogenated Ti6Al4V alloy was carried out on a Gleeble-1500D simulation tester at the strain rate 3×10?3 s?1 and high temperatures. Before the isothermal compression, a simplified thermohydrogen processing (THP) was used for Ti6Al4V. Attention was paid to the effect of THP on subsequent compression behaviour. The results show that hydrogen can effectively lower the flow stress and deformation temperature and enhance the strain rate sensitivity index (m value) for isothermal compression. The increasing amount of β phase and the ultrafine and equiaxial microstructure precipitated between the original α or β laths are the main reasons for the simplified THP to improve the formability of Ti6Al4V.  相似文献   

18.
Ti6Al4V合金表面耐磨涂层的研究进展   总被引:8,自引:0,他引:8  
评述了Ti6Al4V合金表面耐磨涂层的最新研究进展,特别对新的微弧氧化陶瓷涂层予以关注,并由此提出了深入研究的方向。  相似文献   

19.
置氢对Ti6Al4V合金室温组织的影响   总被引:9,自引:0,他引:9  
通过在钛合金中引入临时元素氢,可以改变钛合金的相组成,进而改变钛合金的力学性能和加工性能.利用OP、XRD和TEM研究了固态置氢后Ti6Al4V合金的微观组织变化.研究表明:随氢含量的增加,合金中的β相含量增加,在置氢0.302%及0.490%(质量分数)的试样中发现面心立方(fcc)的氢化物δ,及大量的斜方结构的马氏体α",未发现亚稳态的氢化物γ.提出了一种基于扩散的由βH共析转变生成α及fcc结构的片状氢化物δ的机制,并指出氢的引入可能诱发马氏体转变.  相似文献   

20.
The corrosion resistance of the Ti6Al4V alloy in Carter–Brugirard artificial saliva (pH = 5.2), in saliva with sodium fluoride (NaF) addition (pH = 5.2) and in saliva with NaF and lactic acid (pH = 2.0) was evaluated. The open circuit potential of the alloy in all electrolytes was stable after approximately 2 h of immersion. Higher corrosion rate and lower polarization resistance were measured for the alloy immersed in fluoridated saliva, compared to genuine saliva, indicating that the addition of NaF lead to a worse corrosion resistance. In fluoridated and acidified saliva (pH = 2), the Ti6Al4V alloy exhibited the lowest corrosion resistance. The corroded surfaces are much rougher than those non‐corroded. A higher roughness was obtained for the alloy immersed in saliva with NaF and low pH, indicating that the corrosion process was more active in this electrolyte. Large precipitates of corrosion products and corrosive sites were found on the samples immersed in all electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号