首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The aim of this study was to investigate coaxial electrospun poly(l-lactide-co-?-caprolactone) [PLLACL] nanofibers for the application in nerve tissue engineering. The hypothesis was that the nanofibrous mats fabricated by coaxial electrospun PLLACL could be effective scaffolds for releasing proteins, such as Bovine Serum Albumin (BSA) or/and Nerve Growth Factor (NGF), in a sustained manner. To test the hypothesis, the coaxial electrospun nanofibers with PLLACL as the shell and BSA/NGF as the core were characterized. Morphologies and mechanical properties of nanofibrous mats were examined. BSA released behavior was studied. The results demonstrated that BSA could be sustainedly released from coaxial electrospun PLLACL nanofibers, however, BSA released from mix electrospun nanofibers present the burst release behavior. Bioactivity of released NGF from coaxial electrospun nanofibers was verified by testing the differentiation of rat pheochromocytoma cells (PC12).  相似文献   

2.
Photochromism has been an efficient approach to improve authenticity of commercial products. In order to prepare an authentication nanofibrous film with mechanical reliability, it has been crucial to improve the engineering production route of the authentication materials. Herein, we electrospun photoluminescent nanofibrous film with a fiber diameter of 50–200 nm from the environmentally-friendly polylactic acid embedded with nanoparticles of rare-earth activated strontium aluminate (NRESA; 10–15 nm). The created nanocomposite film was colorless in daylight, and became an intense green in ultraviolet light. The strontium aluminate photochromic agent must be applied in the nanoparticle form to ensure film transparency by enhancing its dispersion without aggregation in the electrospun polylactic acid nanofiber bulk. An emission peak was observed at 518 nm after excitation of the pigment-polylactic acid nanofibers at 365 nm. Raising NRESA ratio increased the hydrophobic properties of the pigment-polylactic acid nanofibers without changing their visual or mechanical properties. The transparent films showed high photochromic reversibility without exhaustion under numerous exposure cycles of ultraviolet light and darkness. The nanofibrous mats were elastic and flexible. The current technique is an effective strategy for making a variety of anti-counterfeiting substances.  相似文献   

3.
Morphology, crystallinity, thermal, and mechanical properties of nanofibrous mats are known to highly affect the behavior of these materials in desired applications. In this study, multiple characteristics of poly(lactic acid) (PLA) nanofibrous mats prepared from plasma‐treated pre‐electrospinning solutions are studied as a function of various plasma operational parameters. X‐ray diffraction, differential scanning calorimetry, thermogravimetric analysis, X‐ray photoelectron spectroscopy, scanning electron microscopy, and tensile tests are performed. In addition, the pristine and plasma‐treated PLA solutions are examined with size exclusion chromatography to study the effect of the conducted pre‐electrospinning plasma treatments (PEPT) on the molecular weight of PLA. Aging analysis of the pristine and plasma‐treated solutions is also performed by evaluating the viscosity, conductivity, surface tension, and pH during an aging period of 10 days. To investigate if the results are only affected by the plasma treatment or also affected by the electrospinning, pristine and plasma‐treated PLA cast layers are also analyzed. The results reveal that PEPT preserved the surface chemical composition of the nanofibers and the molecular weight distribution of PLA, while morphology and mechanical properties of the nanofibers are considerably enhanced. Moreover, plasma‐treated polymer solutions resulted in the formation of nicely elongated nanofibers up to 4 days after plasma treatment.  相似文献   

4.
Electrospinning processing can be applied to fabricate fibrous polymer mats composed of fibers whose diameters range from several microns down to 100 nm or less. In this article, we describe how electrospinning was used to produce zein nanofiber mats and combined with crosslinking to improve the mechanical properties of the as‐spun mats. Aqueous ethanol solutions of zein were electrospun, and nanoparticles, nanofiber mats, or ribbonlike nanofiber mats were obtained. The effects of the electrospinning solvent and zein concentration on the morphology of the as‐spun nanofiber mats were investigated by scanning electron microscopy. The results showed that the morphologies of the electrospun products exhibited a zein‐dependent concentration. Optimizing conditions for zein produced nanofibers with a diameter of about 500 nm with fewer beads or ribbonlike nanofibers with a diameter of approximately 1–6 μm. Zein nanofiber mats were crosslinked by hexamethylene diisocyanate (HDI). The tensile strength of the crosslinked electrospun zein nanofiber mats was increased significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:380–385, 2007  相似文献   

5.
Cocontinuous cellulose acetate (CA)/polyurethane (PU) composite nanofibers were obtained through electrospinning of partially miscible CA and PU in 2:1 N,N‐dimethylacetamide (DMAc)/acetone mixture solvent. Their structures, mechanical, and thermal properties were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The structures and morphologies of the nanofibers were affected by component ratio in the binary mixtures. PU component not only facilitated the electrospinning of CA at CA concentration down to 12 wt%, but reinforced the tensile strength of CA/PU nanofibrous mats, while semirigid component CA in the composite nanofibers could greatly improve the rigidity and dimensional stability of CA/PU nanofibrous mats. In a series of nanofibrous mats with varied CA/PU composition ratios, CA/PU 20/80 showed excellent tensile strength and Young's modulus. The residual product after selective removal of any one of the components in CA/PU composite nanofibers by washing with proper solvent maintained the fiber structure but greatly reduced the fiber size, suggesting CA/PU composite fibers showed a cocontinuous nanofiber structure due to phase separation in the spinning solution and in the course of electrospinning. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

6.
Electrospinning of Polyamide 6 (PA 6) in 2,2,2‐trifluoroethanol (TFE) was investigated for the fabrication of nanofibrous nonwoven membranes useful for separation systems. The effects of solution characteristics such as concentration and conductivity as well as the effects of processing conditions such as relative humidity and applied potential on the resultant nonwoven fibers were studied. By changing the relative humidity of the electrospinning chamber and the conductivity of the solvent, it is possible to modulate the fiber's size and consequently the porosity of the mats. The morphology of the electrospun PA 6 nanofibers was observed by scanning electron microscopy. The mechanical properties of the nanofibers were also studied. The results showed that PA 6 nanofibers having a diameter ranging from 100 to 600 nm, has been successfully prepared. The electrospun PA 6 nanofiber mats show good mechanical properties, such as a high‐tensile strength (12 ± 0.2 MPa) and elongation (300% ± 50%). The strength of the web was high enough to use as filter without the need of any supporting matrix and could be applicable in the field of self‐supporting membranes. The X‐ray and DSC analyses of the PA 6 electrospun fibers show the presence of the γ‐form of PA 6 crystallite that is usually obtained in the condition where a high stress of the fibers is applied. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
In this study, random Poly (?-caprolactone) (PCL):Poly glycolic acid (PGA) nanofibrous scaffold with various PCL:PGA compositions were fabricated by electrospinning method. The nanofibrous scaffolds were characterized by SEM, contact angle measurement, ATR-FTIR, and tensile measurements. The results showed that with the increase of the concentration of PGA in spinning blend solution, the average diameter of nanofibers, hydrophilicity, and mechanical properties of the nanofibrous scaffolds increased. An in vitro degradation study of PCL:PGA nanofibers were conducted in phosphate-buffered saline, pH 7.2. The experiments confirm that increasing of PGA provides faster degradation rate in blended nanofibers. To assay the biocompatibility and cell behavior on the nanofibrous scaffolds, cell attachment and spreading of cardiac progenitor cells seeded on the scaffolds were studied. The results indicate that among electrospun nanofibrous scaffolds, the most appropriate candidate for myocardial tissue engineering scaffolds is PCL:PGA (65:35).  相似文献   

8.
Bin Ding  Eiji Kimura  Shiro Fujita 《Polymer》2004,45(6):1895-1902
A series of blend biodegradable nanofibrous mats comprising poly(vinyl alcohol) (PVA) and cellulose acetate (CA) were prepared via multi-jet electrospinning. A relative high voltage (20 kV) was used to supply the power for multi-jet electrospinning. The weight ratio of PVA/CA in blend nanofibrous mats can be controlled by changing the number ratio of jets of PVA/CA. Moreover, the real composition of PVA and CA in blend nanofibrous mats was determined by immersing the blend nanofibrous mats into water to remove the PVA component. Morphology, dispersibility, and mechanical properties of blend nanofibrous mats were examined by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, wide-angle X-ray diffraction (WAXD), and tensile test. The results showed that the blend nanofibrous mats have good dispersibility. Additionally, the mechanical properties of blend nanofibrous mats were largely influenced by the weight ratio of PVA/CA in blends. Potential applications of the blend nanofibrous mats include filters and biomedical materials.  相似文献   

9.
Chitosan/gelatin-based nanofibers display excellent biological performance in tissue engineering because of their biocompatible composition and nanofibrous structure with a high surface-to-volume ratio mimicking the native extracellular matrix. In this study, to save time and cost of experiments, a response surface methodology based on Box–Behnken design (BBD) is developed to predict the mean diameter of (chitosan:gelatin)/poly(vinyl alcohol) (PVA) nanofibers in three volume ratios of chitosan:gelatin by considering PVA percentage, applied voltage, and flow rate as input variables. The morphology and chemical composition of nanofibers are investigated through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The optimum conditions to yield the minimum diameter of nanofibers with chitosan:gelatin ratios of 25:75, 50:50, and 75:25 are found and result in 165, 121, and 92 nm, respectively, which show good accordance with BBD estimated results. The tensile testing indicates that nanofibers containing higher ratio of chitosan:gelatin result in higher tensile stress and lower toughness and tensile strain. The water contact angle analysis (WCA) shows the appropriate hydrophilicity of crosslinked nanofibers. The MTT assay shows excellent cell viability and cell attachment of nanofibers for mouse fibroblast (L929) cells. The results indicate that optimum nanofibers are potent candidates for wound healing applications.  相似文献   

10.
Carboxymethyl chitosan was pulverized to nanopowder (NCMC) with a diameter of 483 nm through ball-milling. 400 mg NCMC was successfully electrospun to nanofibers with the assistant of 4 g poly (lactic acid) (PLA) to prepare NCMC/PLA nanofibrous composite mats. Scanning electron microscope images revealed that there were no NCMC particles in the NCMC/PLA mats, indicating NCMC had been stretched to nanofibers. NCMC/PLA mats with different morphology could be prepared through adjusting the electrospinning voltage at 12–30 kV and the distance at 10–22 cm. The presence of NCMC increased the spinnability of PLA according to the electrospinning parameters. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy verified the existence of NCMC in the mats. Crosslinking with glutaraldehyde increased the stability of NCMC/PLA in water. Crosslinked NCMC/PLA mats expressed good blood compatibility according to the results of blood clotting time and platelet adhesion experiment. The methodology of preparation nanofibers from polymer nanopowders through electrospinning could be used to prepare more composite nanofibers while adopting different raw materials.  相似文献   

11.
We study the stress–strain behaviors of the electrospun sPP single nanofibers as well as nonwoven mats, which were electrospun from sPP solutions using two different solvents (decalin and cyclohexane) by electrospinning. The effects of organic solvents were explored on the morphologies and the mechanical properties of the corresponding electrospun sPP single nanofibers and nonwoven mats. It was found that the nature of organic solvents dramatically affected the surface morphologies, the circular and looping deposition of the electrospun sPP fibers, and the mechanical properties. The tensile strength of both electrospun sPP single nanofibers and nonwoven mats prepared from decalin-base solution was stronger than that of cyclohexane-base solution.  相似文献   

12.
In this study, a kind of novel composite nanofibrous mats with cellulose diacetate-graft-poly(ethylene terephthalate) (CDA-g-PET) and Type I collagen were obtained by electrospinning and five different ratios of CDA-g-PET/Type I collagen (1:0, 1:0.1, 1:0.2, 1:0.3, 1:0.4) were set to explore the effects of components on its properties. The scanning electron microscope images demonstrated that the formation of uniform and smooth nanofibers with free beads. Compared with pure CDA-g-PET mats, the composite materials transformed into hydrophilic ones with increasing the content of Type I collagen. Moreover, the tensile strength of the composite nanofibrous mats got higher, while its water vapor transmission rate got lower after blending with Type I collagen. In addition, the cell proliferation and adhesion on composite nanofibrous mats were improved according by the results of bone marrow mesenchymal stem cells (BMSCs) culturing experiments. Especially, the cells growth attained optimum when the CDA-g-PET/Type I collagen ratio reached 1:0.3 and 1:0.4, where showed no significant difference. In consequence, the above results indicated that the novel composite nanofibrous mats consisted of CDA-g-PET and Type I collagen obtained by electrospinning combined good mechanical strength of CDA-g-PET and excellent biological functions of Type I collagen. The nanoscale structure might mimic the nanofibrous extracellular matrix feature, which present the potential use in cells culture.  相似文献   

13.
A three‐dimensional structural constitutive equation is proposed to describe the mechanical properties of poly(butylene terephthalate) nanofibers mats. The model is formulated under the assumption that the mechanical response of the fibrous mat is determined by the individual fibers. The inelasticity, which has been observed when subjecting the fibrous mat to tensile tests, is assumed to be due to the gradual breakage of linear elastic fibers. The constitutive relation also takes the material anisotropy associated with the fibers' architecture into account. Uniaxial experimental data were used to assess the proposed model. The results demonstrate that the model is well suited to reproduce the typical tensile behavior of the fibrous mat. In agreement with the empirical observations, the model predicts that almost all the fibers fail when the poly(butylene terephthalate) fibrous mat sample breaks. Nevertheless, multiaxial stress–strain data and quantification of the fibers' orientation are required to completely validate the constitutive law. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5280–5283, 2006  相似文献   

14.
A novel biodegradable sodium poly(aspartic acid) (PASP) hydrogel with microporous structure was manufactured using electrospun polysuccinimide (PSI) nanofibers. PSI is the intermediate of sodium PASP and could be electospun into nanofibers easily. Firstly, PSI nanofibers were prepared from PSI/N, N-dimethylformamide solution. Then the PSI nanofibrous mats were crosslinked and hydrolyzed to obtain biodegradable microporous sodium PASP nanofibrous hydrogels. The chemical structures, morphologies and pore sizes of PSI nanofibrous mats and microporous sodium PASP nanofibrous hydrogels were investigated. Moreover, the properties of PSI electrospinning solutions, and the swelling ratio and biodegradability of sodium PASP hydrogels were also examined. The results showed that the swelling ratio of microporous sodium PASP nanofibrous hydrogels achieved to 21.0–24.3 g/g and were obviously higher than that of the sodium PASP casting film, reporting a swelling ratio of only 4.6 g/g. When the microporous sodium PASP nanofibrous hydrogel was immersed in water, it exhibited quick absorption and morphological robustness. The microporous sodium PASP nanofibrous hydrogel showed 83 wt% weight loss after 7 days of trypsin catalyzed biodegradation, and the SEM analysis demonstrated the significant morphology change of the microporous sodium PASP nanofibrous hydrogel during the biodegradation.  相似文献   

15.
Poly(vinylidene fluoride) (PVDF)-based nanofibrous mats were produced via electrically assisted solution blowing (electroblowing). Morphology and filtration properties of the nanofibrous mats were investigated as a function of polymer concentration and applied voltage. The average fiber diameter was reduced from 727 ± 366 nm to 408 ± 143 nm and from 424 ± 233 nm to 328 ± 105 nm, using 16 wt% and 12 wt% concentrations, respectively, with an increase of electric voltage from 0 to 30 kV. In addition, the pore size of the mats produced from 12 wt% concentration decreases with the increase of electric voltage. Results showed that electroblown mats possess high filtration properties and performance. Enhancement of mechanical capturing efficiency is attributed to the reduction in fiber diameter and pore size. The enhancement of electrostatic capturing efficiency is thought to be from the improved electret property of the mats, which eliminates the need for a second step to polarize nanofibrous mats. As a result, both mechanical and electrostatic capture efficiency of the mats is enhanced compared to solution blown PVDF mats. The emerging electret property might be due to the accumulation of the electrostatic charges at high voltage and the enhanced polarized β phase, which is the result of the high drawing ratio applied to the polymer jet during the spinning process.  相似文献   

16.
Poly(vinylidene fluoride) (PVDF) nanofibrous mats containing silver nanoparticles were prepared by electrospinning. The diameter of the nanofibers ranged between 100 and 300 nm, as revealed by scanning electron microscopy. The silver nanoparticles were dispersed, but some aggregation was observed with transmission electron microscopy. The content of silver nanoparticles incorporated into the PVDF nanofibrous mats was determined by inductively coupled plasma and X‐ray photoelectron spectroscopy. The antibacterial activities of the samples were evaluated with the colony‐counting method against Staphylococcus aureus (Gram‐positive) and Klebsiella pneumoniae (Gram‐negative) bacteria. The results indicate that the PVDF nanofibrous mats containing silver nanoparticles showed good antibacterial activity compared to the PVDF nanofiber control. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Electrospinning is an interesting technique, which provides a facile and an effective mean in producing nonwoven fibrous materials; however, for producing nanofibers, investigation of the electrospinning conditions is very important. In this study, chitosan, gelatin, and their polyelectrolyte complexes (PECs) were electrospun to prepare nonwoven nanofibrous mats. The concentrations of chitosan and gelatin solutions and electric field (kV/cm) were optimized. The solutions were then blended in different ratios (0–100%) to get electrospun nanofibrous mats. Solution concentration and electric field showed pronounced effect on the electrospinnability and fiber diameter of these systems. Mostly large beads coexisted with the fibers were observed for chitosan at 1 wt% solution concentration, which then showed good electrospinnability at 2 wt% (nanofiber diameter was 145 and 122 nm at 15 and 20 kV/10 cm, respectively), whereas gelatin showed no electrospinnability below 15 wt% solution concentration and a homogenous fibers network at 15 wt% (149 nm at 20 kV/10 cm). The morphology and diameter of chitosan–gelatin PEC nanofibers varied with the chitosan/gelatin ratio. The crystallinity of chitosan was also observed to reduce with electrospinning and addition of gelatin. POLYM. ENG. SCI. 50:1887–1893, 2010. © 2010 Society of Plastics Engineers  相似文献   

18.
This article reports on the preparation of novel solvent‐resistant nanofibers by electrospinning of poly(acrylonitrile‐co‐glycidyl methacrylate) (PANGMA) and subsequent chemical crosslinking. PANGMA nanofibers with diameters ranging from 200 to 600 nm were generated by electrospinning different solutions of PANGMA dissolved in N,N‐dimethylformamide. Different additives were added to reduce the fiber diameter and improve the morphology of the nanofibers. The as‐spun PANGMA nanofibers were crosslinked with 27 wt % aqueous ammonia solution at 50°C for 3 h to gain the solvent resistance. Swelling tests indicated that the crosslinked nanofibers swelled in several solvents but were not dissolved. The weight loss of all the crosslinked nanofibrous mats immersed in solvents for more than 72 h was very low. The characterization by electron microscopy revealed that the nanofibrous mats maintained their structure. This was also confirmed by the results of the pore size measurements. These novel nanofibers are considered to have a great potential as supports for the immobilization of homogeneous catalysts and enzymes. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
This article describes the adsorption and tensile behavior of electrospun polyacrylonitrile (PAN) nanofiber mats loaded with different amounts of ZnO [0.5, 1.0, 2.0, and 5.0 wt%] nanoparticles. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transforminfrared (FTIR) spectroscopy, and thermal gravimetric analysis (TGA) were utilized to characterize the resulting composite nanofibers. Microscopic investigations revealed that the increase in surface roughness and diameter of the electrospun PAN nanofibers was due to the addition of ZnO nanoparticles. Adsorption results indicated that the fabricated PAN/ZnO (2.0 wt%) composite nanofiber mats showed the best adsorption performance with 261% and 167% increase in adsorption capacities for Pb(II) and Cd(II) from aqueous solutions, respectively, compared to pristine PAN nanofibers. The adsorption equilibrium was reached within 60 min, and the process could be described using the nonlinear pseudo-second-order kinetic model. The adsorption isotherm study was better represented by the Langmuir model, which suggested a homogeneous distribution of the monolayer adsorptive sites on the surface of the composite nanofibers. Mechanical testing revealed that the decrease in tensile strength and elongation at breakof the PAN/ZnO composite nanofiber mats was due to the formation of some bead defects and agglomerates within the structure of the PAN nanofibers. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47209.  相似文献   

20.
Zhiqiang Su  Jingfeng Li  Qing Li  Tongyang Ni  Gang Wei 《Carbon》2012,50(15):5605-5617
An improved electrospinning technique was used to produce poly(ethylene oxide) (PEO) and PEO-multi-walled carbon nanotube (MWCNT) hybrid nanofibers. By this technique, both the orientation of MWCNTs in the electrospun PEO nanofibers and the orientation of electrospun PEO–MWCNT hybrid nanofibers can be controlled. The morphologies of the as-spun PEO–MWCNT hybrid nanofibers and the dispersion and orientation of MWCNTs in the fiber matrix were observed by scanning and transmission electron microscopy. The effect of electrospinning process and the incorporation of MWCNTs on the chain conformation and semicrystalline framework of PEO were examined by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, and differential scanning calorimetry, and compared with pure PEO and PEO–MWCNT films prepared by casting. Finally, to investigate how the fiber assemblies affect the mechanical and electrical properties of the hybrid materials, tensile testing and impedance analysis were performed on randomly oriented, uniaxially and biaxially oriented PEO–MWCNT hybrid nanofiber mats. The results indicated that both the uniaxially and biaxially oriented assembled hybrid materials have better tensile strength, modulus, and electrical conductivity compared with random nanofibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号