首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
相变储能是热储能的一种,即利用相变材料的储热特性来储存或释放热量,达到调控温度的效果。但相变材料往往不具备光吸收能力,不能及时收集太阳光,导致其光热转换效率较低。将相变材料与光热转换材料复合可以在增强吸光能力的同时将获得的能量存储在相变材料中,赋予复合相变材料高光热转换能力。该文对光热转换材料进行了分类,介绍了其光热转换机理、对紫外光-可见光-近红外光的吸收能力以及在相变领域的应用。此外,还阐述了光热复合相变材料 的复合策略,包括浸渍法、溶胶-凝胶法、涂层法和改性微胶囊法,分析表明,不同复合策略下制备的光热复合相变材料的光吸收能力、导热系数、光热转换效率几乎都得到了提高。因此,将光热转换材料拓展到相变储能领域将进一步优化太阳能资源。  相似文献   

2.
核-壳型聚苯乙烯/二氧化硅复合微球的制备   总被引:1,自引:1,他引:1  
利用层层自组装的方法制备了粒径和组成可裁剪、具有核-壳式结构的单分散聚苯乙烯(PS)/二氧化硅(SiO2)复合微球.对复合微球进行热处理除去有机物中心,制备出壁厚可剪裁的空腔硅球,并对复合微球的热分解过程进行了研究.透射电镜(TEM)照片显示二氧化硅纳米颗粒在中心外生成均匀壳层,而煅烧后则可得到轮廓分明的球形空腔;比较PS,SiO2和复合球体及热处理后的粉体的红外光谱,可分别验证二氧化硅的成功组装和热处理过程中作为中心的PS的完全去除.在吸附相同层数的前提下,随着所选用的二氧化硅纳米粒子的粒径的增大(10-40nm),复合微球的粒径增大,空腔球体的壁厚增加,中心粒子热分解的活化能增大.复合微球的热分解机理符合三维扩散机理.  相似文献   

3.
Photothermal therapy is a treatment technique that has attracted attention as an alternative to conventional surgical techniques. It is based on the photothermal effect, wherein light energy is converted into thermal energy, and facilitates rapid recovery after treatment. This study employed various laser irradiation conditions and presented conditions with the optimal treatment effects through a numerical analysis based on heat transfer. A skin layer comprising four stages containing squamous cell carcinoma was targeted, and the treatment effect was confirmed by varying the heating conditions of the laser and volume fraction of gold nanoparticles. The therapeutic effect was confirmed through both the apoptosis retention ratio, which quantitatively estimated the degree of maintenance of the apoptosis temperature range within the tumor, and the thermal hazard retention value, which quantitatively calculates the amount of thermal damage to the surrounding normal tissues. Finally, the optimal treatment conditions were determined based on the laser intensity, cooling time ratio, and volume fraction of injected gold nanoparticles through numerical analysis.  相似文献   

4.
An ideal insulation material has long been envisioned as one that not only minimizes heat loss but also provides additional heat. This study presents a non-woven fabric, comprising ultra-fine fibers embedded with zirconium carbide nanoparticles (ZrC NPs), prepared via solution blow spinning (SBS) and thermal crosslinking technology. Our results suggest that the fluffily-structured elastomer, fabricated using rigid polystyrene and flexible polyurethane, exhibits high porosity (96.96%), ultra-light characteristics (volume density of 47.12 mg cm−3), and effective heat retention (thermal conductivity of 23.1 mW mK−1 at −40°C). Moreover, the fabric demonstrates remarkable fracture strength (206.38 kPa), high elongation at break (34.5%), and superior elasticity even after 100 compression cycles at 40% strain. Despite the fact that introducing 12% ZrC increases the thermal conductivity of the base fabric by 6%, the NPs endow the material with an excellent photothermal conversion function. Following 10 min of exposure to visible light, the surface temperature increases to 71.5°C. Given its impressive performance, this novel non-woven fabric demonstrates significant potential for applications in the field of cold protection.  相似文献   

5.
MXene是一种新兴的二维纳米材料,具有组成可调、结构可控的特性和优异光热性能。MXene可吸收入射光并将其高效转换为热能,这为太阳能的有效利用提供了新途径。将MXene加入聚合物基体中,可赋予聚合物基复合材料优异光热性能,并拓宽复合材料应用范围,因而被广泛研究。具有光热性能的聚合物基MXene复合材料在海水淡化、个人热管理、光热抗菌和光热治疗肿瘤等方面有着广泛的应用前景。本文总结了MXene及聚合物基MXene复合材料的制备方法,介绍了光热材料的光热转换机理,综述了聚合物基MXene复合材料在光热转换方面的研究进展,展望了具有光热性能的聚合物基MXene复合材料在应用中存在的挑战和未来的发展方向。  相似文献   

6.
This study presents a new type of composite consisting of piezoelectric poly(γ-benzyl-α, l -glutamate) (PBLG) polymer fibers, which contain a large dipole moment, and the elastomer polydimethylsiloxane (PDMS) as the matrix material. PBLG microfibers were fabricated and polarized using the electrospinning method and cast in PDMS to form a unidirectional continuous-fiber composite. The PBLG/PDMS composite was characterized based on various aspects such as crystalline structure, mechanical properties, piezoelectricity, and electromechanical response. The piezoelectric charge constants in the transverse and longitudinal modes were measured to be 10.2 and 54 pC/N, respectively, which are the largest piezoelectric coefficients of biocompatible polymers up to date. The thin PBLG/PDMS composite film can produce up to 200 mV peak-to-peak under sinusoidal actuation and exhibit ultra-sensitivity up to 615 mV N−1. These results show the great potential of the highly flexible piezoelectric polymer fiber-based composite for use in a variety of applications such as energy harvesting devices, biomechanical self-powered structures, and force sensors. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48884.  相似文献   

7.
采用点击化学反应制备了GAP(叠氮缩水甘油聚醚)/PTPET(端炔基环氧乙烷–四氢呋喃共聚醚)弹性体,通过平衡溶胀法和DSC-TG(差热–热重)表征了弹性体的交联与热性能。在不同增塑比条件下,研究了不同配比的GAP/PTPET弹性体的交联密度、玻璃化转变温度(Tg)和热分解表观活化能。结果表明:在相同增塑比条件下,GAP/PTPET弹性体的交联密度随反应物中PTPET含量的增大而呈增大的趋势;增塑比为2.6时,弹性体有较高的交联密度;GAP/PTPET弹性体中软段的Tg偏高于原材料PTPET中软段的Tg;在相同增塑比条件下,随PTPET质量分数的增大,弹性体中软段的Tg减小。GAP/PTPET弹性体的热分解分为3个阶段,第一阶段和第二阶段的热分解表观活化能分别为122.2kJ/mol和137.4kJ/mol,均低于GAP均聚物的热分解表观活化能。  相似文献   

8.
The photothermal effect refers to a phenomenon in which light energy is converted into heat energy, and in the medical field, therapeutics based on this phenomenon are used for anticancer treatment. A new treatment technique called photothermal therapy kills tumor tissue through a temperature increase and has the advantages of no bleeding and fast recovery. In this study, the results of photothermal therapy for squamous cell carcinoma in the skin layer were analyzed numerically for different laser profiles, intensities, and radii and various concentrations of gold nanoparticles (AuNPs). According to the heat-transfer theory, the temperature distribution in the tissue was calculated for the conditions under which photothermal therapy was performed, and the therapeutic effect was quantitatively confirmed through three apoptotic variables. In addition, the laser intensity and the volume fraction of AuNPs were optimized, and the results provide useful criteria for optimizing the treatment effects in photothermal therapy.  相似文献   

9.
Electro-active polymers (EAPs) are emerging as feasible materials to mimic muscle-like actuation. Among EAPs, dielectric elastomer (DE) devices are soft or flexible capacitors, composed of a thin elastomeric membrane sandwiched between two compliant electrodes, that are able to transduce electrical to mechanical energy, actuators, and vice versa, generators. Initial studies concentrated mainly on dielectric elastomer actuators (DEAs) and identified the electro-mechanical principles and material requirements for an optimal performance. Those requirements include the need for polymers with high dielectric permittivity and stretchability and low dielectric loss and viscoelastic damping. Hence, attaining elastomeric materials with those features is the focus of current research developments. This review provides a systematic overview of such research, highlighting the advances, challenges and future applications of DEAs.  相似文献   

10.
Si/graphite composite materials embedded with polymer microsphere as an elastic inactive phase were prepared by high-energy mechanical milling and investigated as a high capacity anode material for lithium rechargeable battery. Improved capacity retention was achieved with the composite. In situ measurement of the electrode thickness revealed that the swelling of the electrode became smaller with the increase of polymer microsphere content. It is believed that polymer microsphere played a buffering role of accommodating the mechanical strains induced by silicon expansion during lithiation, resulting in the suppression of the volume expansion of the electrode, which improved the cycle performance of the electrode.  相似文献   

11.
Significant reductions in linear thermal expansion coefficients in the flow and transverse directions of injection-molded specimens of thermoplastic polyolefin, or TPO, nanocomposites were achieved by controlling the maleated polypropylene (PP-g-MA)/organoclay ratio. Linear thermal expansion behavior was examined using a thermomechanical analyzer (TMA). The trends in thermal expansion for the nanocomposites are discussed in terms of the morphology of both dispersed clay and elastomer phases by means of transmission electron microscopic (TEM) and atomic force microscopic (AFM) observations and subsequent particle analyses. A higher PP-g-MA/organoclay ratio causes an increase in the aspect ratio of clay particles along the flow direction (FD) and transverse direction (TD) for the injection-molded specimens; however, the aspect ratio along the FD was higher than that along the TD. On the other hand, the aspect ratio of elastomer particles along the FD was much higher than that along the TD. Furthermore, highly elongated elastomer particles along the FD were observed. The combined effect of the mechanical constraint by organoclay and the highly elongated elastomer particles caused at high PP-g-MA contents was responsible for the significant reduction of thermal expansion for these materials.  相似文献   

12.
Self-healing coatings for long-term corrosion protection have received much interest in recent years. However, most self-healing coatings rely on healants released from microcapsules, dynamic bonds, shape memory, or thermoplastic materials, which generally suffer from limited healing times or harsh conditions for self-healing, such as high temperature and UV radiation. Herein, we present a composite coating with a self-healing function under easily accessible sunlight by adding Fe3O4 nanoparticles and tetradecanol into epoxy resin. Tetradecanol, with its moderate melting point, and Fe3O4 nanoparticles serve as a phase-change component and photothermal material in an epoxy coating system, respectively. Fe3O4 nanoparticles endow this composite self-healing coating with good photothermal properties and a rapid thermal response time under simulated solar irradiation as well as outdoor real sunlight. Tetradecanol can flow to and fill defects by phase transition at low temperatures. Therefore, artificial defects created in this type of self-healing coating can be healed by the liquified tetradecanol induced by the photothermal effect of Fe3O4 nanoparticles under simulated solar irradiation. The healed coating can still serve as a good barrier for the protection of the underlying carbon steel. These excellent properties make this self-healing coating an excellent candidate for various engineering applications.  相似文献   

13.
Optical hyperthermia systems based on the laser irradiation of gold nanorods seem to be a promising tool in the development of therapies against cancer. After a proof of concept in which the authors demonstrated the efficiency of this kind of systems, a modeling process based on an equivalent thermal-electric circuit has been carried out to determine the thermal parameters of the system and an energy balance obtained from the time-dependent heating and cooling temperature curves of the irradiated samples in order to obtain the photothermal transduction efficiency. By knowing this parameter, it is possible to increase the effectiveness of the treatments, thanks to the possibility of predicting the response of the device depending on the working configuration. As an example, the thermal behavior of two different kinds of nanoparticles is compared. The results show that, under identical conditions, the use of PEGylated gold nanorods allows for a more efficient heating compared with bare nanorods, and therefore, it results in a more effective therapy.  相似文献   

14.
The current research discusses the properties of an elastomeric heat-shielding material, based on nano-silica (NS) filled ethylene propylene diene monomer (EPDM) rubber/Kevlar fiber (KF) hybrid composites. The developed elastomeric insulating material consists of an aromatic polyamide fiber (KF) and silica nanoparticles. An in-depth analysis of mechanical properties, density, coefficient of thermal expansion, thermal conductivity, thermogravimetric analysis, and heat release rate of the insulating materials -was performed. TEM micrograph represents an excellent distribution of nanoparticles in the EPDM matrix. The improvement in the mechanical and the flame retardancy of the NS filled EPDM/KF hybrid composite insulations is based on the fiber/matrix adhesion. Maleic anhydride grafting confers polarity to the nonpolar rubber matrix. The char residues of the insulations inspected by scanning electron microscopy and energy dispersive spectroscopy are depicting a rigid and rough surface by the optimal composites, which can aid in better insulation. The optimal formulation of the hybrid composites exhibited a 220% enhancement in char residue with improved thermal stability and mechanical properties.  相似文献   

15.
Nanocarbon-based polymer actuators have attracted significant attention because of their excellent actuation performance. In this study, a soft bimorph actuator composed of an anisotropic carbon nanotube (CNT)–polymer composite and reduced graphene oxide (rGO) film is fabricated by a simple blade-coating method. Owing to the excellent electrical, optical, and thermal properties of the CNT and rGO, the actuator exhibits dual-responsive actuation. It generates reversible bending deformation with a displacement of ≈13 mm under low electrical voltage stimulation or white light irradiation. Furthermore, because of the embedment of aligned CNTs in polymer matrix, this actuator exhibits excellent mechanical output compared with many of the reported nanocarbon-based actuators. It can lift a 2.048 g clip to a height of ≈5 mm under low electrical voltage stimulation. Based on this soft actuator with dual response and good mechanical output, various bionic devices are designed. A bionic eagle claw that grasps a soft object under electrical stimulation and an artificial flower blooming in response to light irradiation are constructed. Moreover, a light-driven smart curtain and a seagull robot are fabricated. These results reveal the great potential of the dual-responsive anisotropic soft actuator in soft robots and smart devices driven by electricity and light.  相似文献   

16.
Dielectric elastomer actuators (DEAs) are promising soft electromechanical transducers for soft robotics. Fabricating a high-performance DEA actuated by sub-kV voltage remains challenging. Here, a facile method not only to fabricate ultrathin dielectric elastomer films of triblock copolymers but also to enhance the dielectric breakdown strength and thus enhance the electromechanical performance is reported. A thick thermoplastic elastomer film of poly(styrene-b-butyl acrylate-b-styrene) from solution blading is symmetrically pre-stretched and relaxed at 120 °C to fabricate a freestanding ultrathin DE film. Compared with the pristine DE film of the same thickness (12 µm), the thermally-relaxed DE film with equally biaxial pre-stretch ratio 3.5 × 3.5 exhibits increased electrical breakdown strength by a factor of 1.9 (from 43 to 82 V µm−1), maximum actuation area strain by a factor of 1.9 (from 11.7% to 22.4%), and highest energy density by a factor of 5.7 (from 4.5 to 25.8 kJ m−3). The enhancement may be ascribed to the self-reinforcement of the dielectric breakdown strength due to the morphology change of polystyrene nanodomains from spheres to oblate spheroids. Thanks to the ultra-thinness, the high electromechanical performance is achieved within sub-kV driving voltage in all cases.  相似文献   

17.
负热膨胀(negative thermal expansion,NTE)材料可作为填料制备可控热膨胀复合材料.高质量聚合物复合材料的研发面临诸多挑战,包括NTE 填料与基体材料的相容性,NTE相的稳定性,颗料形貌和尺寸的控制及其对混合稗度的影响.本文对影响聚合物复合材料成型中存在的诸多可能存 在的问题进行了述评,讨论了对有望用作填料的NTE材料的要求,即对NTE填料颗粒尺寸和相容性进行合成控制.通过晶体前驱体到目标NTE相 的拓扑转变,可实现对颗粒尺寸的最优控制.  相似文献   

18.
The considerable electric-induced shape change, together with the attributes of lightweight, high efficiency, and inexpensive cost, makes dielectric elastomer, a promising soft active material for the realization of actuators in broad applications. Although, a number of prototype devices have been demonstrated in the past few years, the further development of this technology necessitates adequate analytical and numerical tools. Especially, previous theoretical studies always neglect the influence of surrounding medium. Due to the large deformation and nonlinear equations of states involved in dielectric elastomer, finite element method (FEM) is anticipated; however, the few available formulations employ homemade codes, which are inconvenient to implement. The aim of this work is to present a numerical approach with the commercial FEM package COMSOL to investigate the nonlinear response of dielectric elastomer under electric stimulation. The influence of surrounding free space on the electric field is analyzed and the corresponding electric force is taken into account through an electric surface traction on the circumstances edge. By employing Maxwell stress tensor as actuation pressure, the mechanical and electric governing equations for dielectric elastomer are coupled, and then solved simultaneously with the Gent model of stain energy to derive the electric induced large deformation as well as the electromechanical instability. The finite element implementation presented here may provide a powerful computational tool to help design and optimize the engineering applications of dielectric elastomer.  相似文献   

19.
Dielectric elastomers are promising materials for actuators resembling human muscle. Among elastomers, acrylic rubbers (ACM) have shown good actuation performance but its use is limited by the high operating voltages required. The present work demonstrates that simultaneous incorporation of nanostructured carbon black and dielectric fillers offers an increase in a dielectric permittivity and a suitable modulus of the elastomers matrix, enabling an improved electro‐mechanical actuation performance at low voltages. By the use of reinforcing carbon black and barium titanate in an acrylic elastomer matrix a sixfold increase in the dielectric permittivity was realized. A fine tuning of the actuation stress and, consequently, actuation strain can be done by a judicial selection of the different filler concentrations in the soft rubber matrix. Finally, a synergistic effect of the fillers was observed in the improved actuation performance of the developed materials. This work may pave the way to design dielectric elastomers for actuator fabrication. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44116.  相似文献   

20.
The linear thermal expansion behavior of thermoplastic polyolefin, or TPO, nanocomposites based on a polypropylene/elastomer/masterbatch mixture was examined using a thermomechanical analyzer (TMA). For these experiments the masterbatch consisted of a mixture of organoclay and maleated polypropylene. The nanocomposites were prepared in a twin-screw extruder. The effects of both the elastomer domains and the filler particles on the thermal expansion behavior of the nanocomposites were investigated by means of transmission electron microscopy (TEM) and atomic force microscopy (AFM). The addition of elastomer tends to increase the linear coefficient of thermal expansion, CTE. On the other hand, the addition of clay significantly reduces the thermal expansion in both the flow (FD) and transverse directions (TD) of injection molded specimens; however, the extent of reduction of CTE in the FD is much greater than in the TD. The CTE in the normal direction (ND) increases when either the clay or elastomer content is increased. The trends in thermal expansion for the nanocomposites are discussed in terms of the morphology of both dispersed clay and elastomer phases based on TEM and AFM observations and subsequent particle analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号