首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research studied the effect of fused deposition modeling (FDM) 3D printing on three phase dielectric nanocomposites using poly(vinylidene) fluoride (PVDF), BaTiO3 (BT), and multiwall carbon nanotubes (CNTs). PVDF polymer and BT ceramics are piezo-, pyro- and di-electric materials extensively used for sensor and energy storage/harvesting applications due to their unique characteristic of dipole polarization. To increase dielectric property, CNTs have been recently utilized for uniform dispersion of BT nanoparticles, ultrahigh polarization density, and local micro-capacitor among matrix. It was proved that 3D printing process provides homogeneous dispersion of nanoparticles, alleviating agglomeration of nanoparticles and reducing micro-crack/voids in matrix which can potentially enhance their dielectric property than traditional methods. In this research, these three-phase nanocomposites are fabricated through FDM 3D printing process and characterized for dielectric property. Increasing both BT and CNT nanoparticles improves dielectric properties, while CNTs have a percolation threshold near 1.7?wt%. The most desirable combination of dielectric constant and loss properties (118 and 0.11 at 1?kHz) is achieved with nanocomposites containing 1.7?wt%-CNT/45?wt%-BT/PVDF. These results provide not only a technique to 3D print dielectric nanocomposites with improved dielectric property but also large-scale electronic device manufacturing possibility with freedom of design, low cost, and faster process.  相似文献   

2.
A simple and facile method was developed to fabricate functional bulk barium titanate (BaTiO3, BT) ceramics using the paste extrusion 3D printing technique. The BT ceramic is a lead-free ferroelectric material widely used for various applications in sensors, energy storage, and harvesting. There are several traditional methods (eg, tape casting) to process bulk BT ceramics but they have disadvantages such as difficult handing without shape deformation, demolding, complex geometric shapes, expansive molds, etc. In this research, we utilized the paste extrusion 3D printing technique to overcome the traditional issues and developed printable ceramic suspensions containing BT ceramic powder, polyvinylidene fluoride (PVDF), N,N-dimethylformamide (DMF) through simple mixing method and chemical formulation. This PVDF solution erformed multiple roles of binder, plasticizer, and dispersant for excellent manufacturability while providing high volume percent and density of the final bulk ceramic. Based on empirical data, it was found that the maximum binder ratio with good viscosity and retention for desired geometry is 1:8.8, while the maximum BT content is 35.45 vol% (77.01 wt%) in order to achieve maximum density of 3.93 g/cm3 (65.3%) for 3D printed BT ceramic. Among different sintering temperatures, it was observed that the sintered BT ceramic at 1400°C had highest grain growth and tetragonality which affected high performing piezoelectric and dielectric properties, 200 pC/N and 4730 at 103 Hz respectively. This paste extrusion 3D printing technique and simple synthesis method for ceramic suspensions are expected to enable rapid massive production, customization, design flexibility of the bulk piezoelectric and dielectric devices for next generation technology.  相似文献   

3.
The well distributed and electroactive polyvinylidene fluoride (PVDF)/magnetite nanocomposites were successfully fabricated using a mixed solvent system (THF/DMF). Dynamic mechanical properties of the fabricated PVDF/magnetite nanocomposites indicate significant enhancements in the storage modulus as compared with that of neat PVDF. By adding 2 wt % magnetite nanoparticles into the PVDF matrix, the thermal stability of nanocomposites could be enhanced about 26°C as compared with that of PVDF. The β‐phase fraction of PVDF is significantly enhanced with increasing the voltage of electric field poling. The piezoelectric responses of PVDF/magnetite films are extensively increased about five times in magnitude with applied strength of electrical field at 35 MV/m. The change of piezoelectric responses during the applied electric field may be due to the relative long arrangement of PVDF units along the direction of electric field poling and thus increases the values of Lp* and lc. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40941.  相似文献   

4.
Integration of the excellent attributes of high dielectric constant and low dielectric loss in flexible polymer-based nanocomposites has attracted increased research attention because of their extensive applications in modern electronic and electric industry. In this study, to obtain the optimized dielectric constant and loss, the fabrication and properties of a three-phase nanocomposites, including poly(vinylidene fluoride) (PVDF) and two nanofillers, namely, surface-modified multi-wall carbon nanotubes (mCNTs) and barium titanate nanoparticles (mBTs), are investigated in detail. The mCNTs and mBTs were obtained via the hydrolysis of 3-aminopropyltriethoxysilane (AMEO) and condensation reactions between the AMEO and nanofillers. The three-phase nanocomposites are fabricated by a phase-separation and hot-pressing process. The mCNTs and mBTs can be uniformly dispersed within the PVDF polymer matrix because of the enhanced hydrogen bonding interaction and compatibility with the polymer matrix. The percolation threshold (as low as 0.50 vol%) of the two-phase mCNTs/PVDF nanocomposites is adopted to optimize the dielectric properties of the three-phase mCNTs/mBTs/PVDF nanocomposites. At the frequency of 102 Hz, a high dielectric constant of 109 and low loss of 0.06 are obtained for the three-phase nanocomposites with only 0.41 vol% mCNTs and 2.8 vol% mBTs, respectively. Meanwhile, owing to the low percolation threshold and enhanced surface compatibility between the nanofillers and PVDF, the tensile strength of the three-phase nanocomposites is greater than that of PVDF by a factor of greater than 1.5. Owing to their high dielectric constant, low dielectric loss and good mechanical properties, these PVDF-based ternary nanocomposites show potential for applications in electronic devices and energy storage systems.  相似文献   

5.
To enhance the discharge energy density (Ue ) of polyvinylidene fluoride (PVDF), two-dimensional (2D) titania nanosheets (TNSs) with high aspect ratio were introduced into PVDF. The results show that the TNSs are uniformly dispersed in matrix and the existence of matrix-filler interface is confirmed by small angle X-ray scattering. Introducing of high aspect ratio TNSs is beneficial to enhance the concentration of polar β-phase and interfacial polarization, which can improve the permittivity (εr ) of nanocomposites. Meanwhile, the shape of 2D TNSs plays an important role in enhancement of breakdown strength (Eb ). The εr and Eb of the nanocomposites are two significant factors of their high energy storage performance. Therefore, the Ue increases to 0.32 J/cm3, which is 28% higher than that of pure PVDF (~0.25 J/cm3). The energy efficiency of this typical nanocomposite is similar as that of pure PVDF (~90%). This work might provide a method of fabricating promising energy storage dielectric materials.  相似文献   

6.
We report here for the first time the role of noncovalently functionalized 2D nanomaterials on the ferroelectric and piezoelectric behavior of poly(vinylidene fluoride) (PVDF) nanocomposites. Graphene oxide (GO), expanded graphite (EG) and hexagonal boron nitride (h-BN) were noncovalently modified via Li-salt of 6-amino hexanoic acid (Li-AHA), denoted as m-GO, m-EG and m-BN, in order to de-agglomerate and de-stack them, which were subsequently incorporated into the PVDF matrix via solution mixing, followed by compression molding. Simultaneously, PVDF nanocomposites with unmodified 0.08 wt% of 2D nanomaterials were also prepared using the same methodology. PVDF/m-BN nanocomposite showed a higher extent of polar phase (~36%) associated with PVDF phase as compared to PVDF/m-GO and PVDF/m-EG nanocomposites. Further, the highest permittivity (~58 at 10−1 Hz) was achieved in PVDF/m-BN nanocomposite, which was also reflected in higher remnant polarization (~61 nC/cm2) and a significantly higher d33 value (~53 pm/V). Moreover, a higher output peak to peak voltage (~13 V) was obtained for the sensor device fabricated from PVDF/m-BN nanocomposite. Thus, the role of Li-AHA-modified 2D nanomaterials in improving the morphology, dielectric, ferroelectric, and piezoelectric characteristics of the PVDF nanocomposites was clearly established.  相似文献   

7.
In this work, 3D printable gel polymer electrolytes (GPEs) based on N,N‐dimethylacrylamide (DMAAm) and polyvinylidene fluoride (PVDF) in lithium chloride containing ethylene glycol solution are synthesized and their physicochemical properties are investigated. 3D printing is carried out with a customized stereolithography type 3D gel printer named “Soft and Wet Intelligent Matter‐Easy Realizer” and free forming GPE samples having variable shapes and sizes are obtained. Printed PVDF/PDMAAm‐based GPEs exhibit tunable mechanical properties and favorable thermal stability. Electrochemical proprieties of the printed GPEs are carried out via impedance spectroscopy in the temperature range of 25–90 °C by varying PVDF content. Ionic conductivity as high as 6.5 × 10?4 S cm?1 is achieved at room temperature for GPE containing low PVDF content (5 wt%) and conductivity of the GPEs is increased as temperature rises.  相似文献   

8.
Dielectric nanocomposites have attracted much attention due to their wide applications in electronics and electrical industry. Recently, incorporating core-shell nanoparticles into polymer matrix to improve the dielectric properties of nanocomposites has been widely reported. Tailoring the interfacial region between the polymer and the nanoparticles plays a crucial role in achieving the desired dielectric and energy storage properties of nanocomposites. However, the effect of shell structure in the interface region on the dielectric and energy storage properties is rarely studied. Based on this, core-shell BaTiO3 nanoparticles with two different shell polymers, a “hard-soft” copolymer of methyl methacrylate and butyl acrylate (P[MMA-BA]) and a “hard” homopolymer of methyl methacrylate (PMMA), were prepared in this paper. The effect of core-shell BaTiO3 nanoparticles with different shell structures on the dielectric and energy storage properties of poly(vinylidene fluoride) (PVDF) was investigated in depth. Due to the formation of a tight interfacial region between P(MMA-BA)@BT and PVDF matrix, P(MMA-BA)@BT/PVDF nanocomposites not only have low dielectric loss but also higher energy efficiency than PMMA@BT/PVDF nanocomposites. This study suggests a potential strategy that fabricating a “hard-soft” copolymer shell on BaTiO3 surface can obtain desirable energy storage efficiency than the single “hard” shell structure in dielectric nanocomposites.  相似文献   

9.
Engineering the surface morphology with optimized crystallinity is very crucial for practical applications such as energy storage, electromechanical devices, and self-cleaning. Organic nanocomposites permit one to tune the dielectric properties by controlling the crystallinity and surface morphology. Here, we report our investigation on metallophthalocyanines of nickel and copper as an organic additive to poly(vinylidene fluoride) (PVDF) to modify the structural, optical, wetting, and electrical properties of the nanocomposite multilayers deposited using Langmuir-Schaefer method. The incorporation of the metallophthalocyanines in the nanocomposite multilayers was confirmed from the signature Bragg peaks, and the fingerprint absorbance using grazing incidence X-ray diffraction and Fourier transform infrared spectroscopy, respectively. Aggregation behavior of the metallophthalocyanines in the polar matrix of PVDF was studied using ultraviolet–visible spectroscopy. Surface morphological studies using field emission scanning electron microscopy on the nanocomposite multilayers show the presence of both spherical crystallites and rod-like structures which depends upon the composition and nature of metal in metallophthalocyanine. The surface wettability of these multilayers was investigated using static and dynamic contact angle studies. A significant enhancement in the dielectric constant has been observed for both nanocomposites relative to the pristine multilayer of PVDF. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47818.  相似文献   

10.
A flexible self-powered piezoelectric nanogenerator (FSPN) of high power density was constructed using a poly (vinylidene fluoride) (PVDF) polymer matrix based on solution crystallization. Since the solubility parameter of the N-methylpyrrolidone (NMP) was closed to that of the PVDF, the FSPNs fabricated by PVDF and NMP showed a high concentrations of β-phase and a high power density of 6.6 W/m3 together with excellent mechanical properties and transparent. In addition, the FSPN retained its excellent performance even after 2000 cycles of cantilever vibration, which hold a great potential for harvesting mechanical energy for self-powered systems and provide a simpler solution for energy collection and utilization in our actual lives.  相似文献   

11.
Dielectric nanocomposites with ceramic fillers have a crucial role in energy storage applications. Therefore, poly(vinylidene fluoride) (PVDF) based nanocomposites filled with 20 nm diameter, surface hydroxylated BaTiO3 nanowires (BTnws) were produced by solution-casting method in this work, in which BTnws were synthesized via solvothermal method. The dielectric constant of BTnws/PVDF nanocomposites was 24 when the content of fillers was 10vol% at 100 Hz and the breakdown strength could increase up to 417 kV/mm before decreasing. The nanocomposites showed enhanced energy density performance and the maximum energy density could reach to 8.1J/cm3 at 320 kV/mm with 10vol% BTnws, nearly tripled that of pure PVDF at 300 kV/mm. Finite element and molecular dynamic simulation results revealed that thin BTnws could create dielectric homogeneity in the nanocomposites and have strong interface interaction with PVDF molecular. The ultrathin BTnws provided the possibility that single PVDF molecular could wrap on its surface, but this molecular wrapping pattern would not occur when the diameter of BTnws was large. Besides, the wrapping pattern could be reinforced by interactions between surface hydroxyl groups of BTnws and F atoms of PVDF molecular. Such contributions could induce good interface compatibility and lead to the improvement of energy density.  相似文献   

12.
This paper presents 3D printing of piezoelectric sensors using BaTiO3 (BTO) filler in a poly(vinylidene) fluoride (PVDF) matrix through electric in situ poling during the 3D printing process. Several conventional methods require complicated and time‐consuming procedures. Recently developed electric poling‐assisted additive manufacturing (EPAM) process paves the way for printing of piezoelectric filaments by incorporating polarizing processes that include mechanical stretching, heat press, and electric field poling simultaneously. However, this process is limited to fabrication of a single PVDF layer and quantitative material characterizations such as piezoelectric coefficient and β‐phase percentage are not investigated. In this paper, an enhanced EPAM process is proposed that applies a higher electric field during 3D printing. To further increase piezoelectric response, BTO ceramic filler is used in the PVDF matrix. It is found that a 55.91% PVDF β‐phase content is nucleated at 15 wt% of BTO. The output current and β‐phase content gradually increase as the BTO weight percentage increases. Scanning electron microscopy analysis demonstrates that larger agglomerates are formulated as the increase of BTO filler contents and results in increase of toughness and decrease of tensile strength. The highest fatigue strength is observed at 3 wt% BTO and the fatigue strength gradually decreases as the BTO filler contents increases.  相似文献   

13.
Novel lead-free diphasic (1-x)Ba0.9Sr0.1Ti0.9Hf0.1O3-xNa0.5Bi0.5TiO3 (BSTH-NBT) ceramic nanocomposites were synthesized via an economically viable modified mechano-chemical activation technique. In the present investigation, we have developed an energy storage composite material by systematically optimizing the charge transport behavior and charge storage characteristics between the ferroelectric BSTH and piezoelectric NBT phase. The composite with x = 0.09 NBT concentration has shown the best energy storage properties with 1.61 J/cm3 discharge energy density along with 80.1% energy efficiency. The BSTH and NBT had a synergetic effect on the ferroelectric properties of the composites. The improvement in ferroelectric and piezoelectric properties along with excellent aging characteristics in composite materials is mainly attributed to enhancement in microstructural density, grain boundary interface, and stress effects. The improved dispersibility and excellent compatibility between BSTH and NBT phase have resulted in approximately 20% enhancement in breakdown strength of composite compared to pure BSTH ceramic.  相似文献   

14.
PVDF nanocomposites are prepared through solution mixing of Au‐NPs or Au‐NSs with PVDF. The novel optical properties of Au‐NPs and ‐NSs are retained as confirmed from UV‐Vis spectra. Analysis of resulting nanocomposites by FT‐IR, XRD, and DSC shows an obvious polymorphism change from α‐ to β‐form compared to PVDF prepared under the same conditions. The β‐polymorph seems to be more prominent with higher concentration of Au‐NPs (0.5%) and even more so with Au‐NSs. Thermogravimetric analysis shows that both nanocomposites have better resistance toward thermal degradation. Combination of novel optical properties of Au‐NPs or Au‐NSs with induced ferroelectric‐active β‐polymorph in PVDF can lead to new design of optical, piezoelectric devices.

  相似文献   


15.
The advancement in materials for energy storage for supercapacitors has been supported by the current shortage of energy as well as the increasing availability of sources of clean energy. Consequently, two-dimensional materials based on metal oxide nanoparticles (copper oxide (CuO) and zinc oxide (ZnO), have great potential for the previously discussed utilization. A simple and affordable solid-state approach was employed to design hybrid nanocomposite based on chitosan (Cs) blended with ZnO and CuO; this nanocomposite was labeled with CZC. The structural, morphological investigation of CZC hybrid nanocomposites, and X-ray diffraction (XRD) of the prepared nanocomposites were characterized. Consequently, hybrid nanocomposites for application as electrodes for supercapacitor devices were developed. The hybrid nanocomposite (CZC-3) shows improved cycle stability, high energy density, and a specific capacitance in the electrochemical activity. Remaining at 97.8% of the initial capacitance even after 5000 cycles. These results imply that the hybrid nanocomposite based on Cs/ZnO/CuO has a promising future as a supercapacitor electrode material. Additionally, it provides superior performance to other nanocomposites with a high specific capacitance of 638.3 F/g and about 86.98% capacity retention after 5000 cycles at a current density of 1 A/g.  相似文献   

16.
3D printing has been extensively applied in human‐related activities, and therefore the 3D printed nanocomposites became more popular and important in end‐use products. In the present study, we use lignin‐coated cellulose nanocrystal (L‐CNC) to reinforce 3D printed acrylonitrile butadiene styrene (ABS) and explore the effect of L‐CNC on the structural, mechanical, and thermal properties of 3D printed L‐CNC/ABS nanocomposites. The results indicate that the addition of L‐CNC foams the ABS and decreases the density of 3D printed L‐CNC/ABS nanocomposites. However, the tensile modulus and storage modulus increase by adding 4% L‐CNC. The thermal stability of 3D printed L‐CNC/ABS nanocomposites is also significantly improved as indicated by an increase in the maximum degradation temperature. The morphology of the nanocomposites reveals good dispersion and interfacial adhesion between L‐CNC and ABS. The finding indicates that the 3D printed nanocomposites become lighter and stiffer with addition of L‐CNC, which will have great potential to be applied in end‐use products. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45082.  相似文献   

17.
Ceramic/polymer composites are attracting increasing interest in materials research and practical applications due to the combination of excellent electric properties of piezoelectric ceramics and good flexibility of polymer matrices. In this case, the crystallization of the polymer has a significant effect on the electric properties of ceramic/polymer composites. Based on different heat treatment methods, the crystallization of poly(vinylidene fluoride) (PVDF) in composites of lead zirconate titanate (PZT) and PVDF can be controlled effectively. PZT/PVDF composites with various PVDF crystallizations exhibit distinctive dielectric and piezoelectric properties. When the crystallization of PVDF is 21%, the PZT/PVDF composites show a high dielectric constant (ε) of 165 and a low dielectric loss (tan δ) of 0.03 at 103 Hz, and when the crystallization of PVDF reaches 34%, the piezoelectric coefficient (d33) of PZT/PVDF composites can be up to ca 100 pC N?1. By controlling the crystallization of PVDF, PZT/PVDF composites with excellent dielectric and piezoelectric properties were obtained, which can be employed as promising candidates in high‐efficiency capacitors and as novel piezoelectric materials. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
A novel approach to preparing electrospun polyvinylidene fluoride (PVDF) nanofibers is proposed, with high piezoelectric performance. PVDF nanofibers are doped with inorganic salts without the use of any postpolarization treatment. Twenty‐six salts are doped into the nanofibers and their piezoelectric properties are studied. The salts are classified into three groups based on their differing piezoelectric enhancement effects. A piezoelectric nanogenerator fabricated with an optimized electrospun PVDF nanofiber mat shows a piezovoltage seven times greater than that of a device based on undoped nanofibers. The simple and low‐cost approach to fabricate these piezoelectric nanofiber mats may broaden the range of industrial applications of these materials in energy‐harvesting devices and portable sensors.  相似文献   

19.
3D printing systems are being used more and more due to the combination of energy materials, such as combinations of polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) composites, that has become possible recently. However, to obtain strong piezoelectric properties, the poling step where a high voltage is applied to a part for a long period of time is indispensable due to the nature of the material. This inconvenience is the largest obstacle to widespread acceptance of this technology so, from an industrial perspective, tackling this issue is vital. In this paper, the authors build an in situ poling system suitable for PVDF-HFP composites into a digital light processing (DLP) printing system that is able to greatly shorten poling times while improving the piezoelectric properties of the resulting materials. This approach achieves a ten times reduction in the total process time needed to produce piezoelectric films with a piezoelectric coefficient of 42 pC N−1 when compared to the typical time needed to complete a post-poling process that gives similar piezoelectric properties. In addition, a piezoelectric device printed using the authors' approach reveals its great potential for producing large-area flexible sensors with high sensitivity (R2 = 0.99) and excellent mechanical durability (10 000 cycles).  相似文献   

20.
Poly(vinylidene fluoride) (PVDF) composite films were prepared by introducing polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) into PVDF matrix. Uniform dispersion and good compatibility of PS-b-PMMA in matrix were observed, which was helpful for high breakdown strength (Eb). The composite film with 9 wt% PS-b-PMMA showed the maximum Eb of 522 kV/mm and the high discharged energy density (Ue) of 10.1 J/cm3, which were 1.7 times and 2.6 times higher than pure PVDF, respectively. Besides, a charged-discharged efficiency (η) of 88% was much higher than pure PVDF at 300 kV/mm, which was beneficial to energy storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号