首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Poly(vinylidene fluoride) (PVDF) films filled with mixed fillers of CuCl2–MnCl2 were prepared. The differential thermal analysis (DTA) indicates the existence of two main endothermic peaks and the crystallization exothermic temperature. X-ray diffraction (XRD) evidenced the presence of a semicrystalline structure containing α, β, and γ crystalline phases. The optical absorption spectra depicted two shoulder-like bands as well as a strong valley. The IR spectra confirmed the XRD implications about the presence of α, β, and γ phases. The dc electrical resistivity results are discussed on the basis of Kuivalainen modified interpolaron hopping model. The temperature and filling level dependence of the hopping distance R0 were studied. The dc magnetic susceptibility data follow the Curie-Weiss law. The electron spin resonance (ESR) investigation suggested the existence of aggregated Mn2+ for higher values of x where the spectra were characterized by Lorentzian signal. On the other hand, at lower values of x, the spectra were characterized by two unresolved sharp peaks.  相似文献   

2.
TiB2–AlN–SiC (TAS) ternary composites were prepared by reactive hot pressing at 2000°C for 60 min in an Ar atmosphere using TiH2, Si, Al, B4C, BN and C as raw powders. The phase composition was determined to be TiB2, AlN and β-SiC by XRD. The distribution of elements Al and Si were not homogeneous, which shows that to obtain a homogeneous solid solution of AlN and SiC in the composites by the proposed reaction temperatures higher than 2000°C or time duration longer than 60 min are needed. The higher fracture toughness (6·35±0·74 MPa·m1/2 and 6·49±0·73 MPa·m1/2) was obtained in samples with equal molar contents of AlN and SiC (TAS-2 and TAS-5) in the TAS composites. The highest fracture strength (470±16 MPa) was obtained in TAS-3 sample, in which the volume ratio of TiB2/(AlN+SiC) was the nearest to 1 and there was finer co-continuous microstructure. ©  相似文献   

3.
The effect of interlayer distance of nanoclay on mechanical properties, cure characteristics, and swelling resistance of natural rubber (NR) in varying clay proportion were studied. X-ray diffraction results of nanocomposite with 10 phr of nanoclay showed the formation of an intercalated structure. The rate of vulcanization and maximum torque value of the nanocomposite are higher than the gum compound. Nanocomposites with clay having higher interlayer distance shows superior mechanical properties. Mechanical properties gradually increase with increase in clay loading up to 10 phr. A 50% increase in tensile strength and about 150% increase in modulus at 300% elongation were observed for the nanocomposite with 10 phr clay loading. Better barrier properties offered by the nanocomposites due to the presence of tortous path was confirmed by the Nielson's model.  相似文献   

4.
Refractories and Industrial Ceramics - High-density (with a relative density of up to 98.8%) ultra-high-temperature ceramic materials (UHTCs) based on the ZrB2–TaC–SiC system were...  相似文献   

5.
TaC–TaSi2 composites were fabricated at 1700°C by an in situ reaction/hot pressing method using Ta, Si, and graphite as initial materials. TaSi2 content was 0–100 vol%. The microstructure and mechanical properties of the composites were investigated. It was found that the relative densities of composites were above 97.5% when the volume content of TaSi2 was above 10%. The TaC/10 vol% TaSi2 composite presented the highest flexural strength of 376 MPa. When the TaSi2 content was 30–50 vol%, the composites showed the highest fracture toughness of about 4.3 MP·am1/2. In addition, the composites could retain high Young's modulus up to at least 1525°C.  相似文献   

6.
The use of acoustic-emission (AE) techniques integrated with single-particle composite (SPC) mechanical–optical testing is proposed to evaluate and characterize adhesion in particle-filled polymeric composites. It is shown that not only can an intrinsic interfacial strength be determined but also that different types of adhesion mechanisms may be distinguished in terms of straightforward criteria using the wavelet transform (WT) of the acoustic signature, once problems with internal reflections in the test coupon are resolved. The validity of the proposed method is demonstrated with a study of the adhesion of a commercial poly(vinylbutyral) (PVB) to bare and aminosilane-treated glass beads.  相似文献   

7.
Two different SiC ceramics with a new additive composition (1.87 wt% Y2O3–Sc2O3–MgO) were developed as matrix materials for fully ceramic microencapsulated fuels. The mechanical and thermal properties of the newly developed SiC ceramics with the new additive system were investigated. Powder mixtures prepared from the additives were sintered at 1850 °C under an applied pressure of 30 MPa for 2 h in an argon or nitrogen atmosphere. We observed that both samples could be sintered to ≥99.9% of the theoretical density. The SiC ceramic sintered in argon exhibited higher toughness and thermal conductivity and lower flexural strength than the sample sintered in nitrogen. The flexural strength, fracture toughness, Vickers hardness, and thermal conductivity values of the SiC ceramics sintered in nitrogen were 1077 ± 46 MPa, 4.3 ± 0.3 MPa·m1/2, 25.4 ± 1.2 GPa, and 99 Wm−1 K−1 at room temperature, respectively.  相似文献   

8.
A novel matrix resin system, poly(keto-sulfide)–epoxy resin, has been developed. The poly(keto-sulfide)s (PKS), based on various ketones, formaldehyde, and sodium hydrogen sulfide (NaSH), were prepared by the reported process. These (PKS) having terminal thiol (–SH) groups were used for curing commercial epoxy resin (i.e., diglycidyl ether of bisphenol A – DGEBA), to fabricate crosslinked epoxy-poly(keto-sulfide) resin glass fiber-reinforced composites (GRC). Various epoxy/hardener (PKS) mixing ratios were used, and the curing of epoxy-PKS has been monitored using differential scanning calorimetry (DSC) in dynamic mode. Based on DSC parameters the GRC of epoxy-PKS were prepared and characterized by thermal and mechanical methods. The variation in resin/hardener ratio led to variations in thermal and mechanical properties.  相似文献   

9.
Glass and jute (treated and untreated) composites of epoxy resin of 1,1′-bis(3-methyl-4-hydroxy phenyl)cyclohexane(EMC) cured using 20% triethylamine as a hardener (G-EMCT-20 and J-EMCT-20) and EMC- polyurethane of toluene diisocyanate (J-EMCPU and TJ-EMCPU) have been prepared by a hand layup technique under 27.58 MPa pressure and at 150°C for 4 h. G-EMCT-20, J-EMCT-20, J-EMCPU and TJ-EMCPU showed 275, 96.5, 37.3 and 31.5 MPa tensile strength; 351, 84, 10 and 24 MPa flexural strength; 5837, 2758, 1277 and 1619 MPa elastic modulus; 24.6, 7.1, 1.9 and 1.6 kV/mm electric strength; and 1.4 × 1013, 1.1 × 1011, 7.7 × 1010 and 3.6 × 1010 ohm cm volume resistivity, respectively. Fairly good to excellent mechanical and electrical properties of the composites indicated their industrial applications in building and construction, electrical and electronic industries.  相似文献   

10.
The nanocomposite of the Poly(vinyl chloride)/acrylonitrile-chlorinated- polyethylene-styrene (ACS)/methylacryloylpropyl-contaning polyhedral oligomeric silsesquioxane (MAP-POSS) (PVC/ACS/MAP-POSS) was prepared. Plasticizing behavior, dynamic rheology behavior and mechanical properties of the nanocomposites were investigated. The results showed that the plastic time decreased with increasing MAP-POSS content. The dynamic storage modulus G ′, loss modulus G″ and complex viscosity η* of the nanocomposites all exhibit a monotonic change with increasing frequency, and all have maximum when MAP-POSS content is 4 wt%, at the same frequency. The MAP-POSS can be used as an efficient process aid and impact aid of PVC/ACS blend at appropriate content.  相似文献   

11.
Acetylene- and diacetylene-containing organosilicon polymers continue to be of great interest in academia, government, and industry due to their high thermo-oxidative stability combined with excellent solubility and processability characteristics. Progress in this field over the past 30 years is reported herein. We present and discuss the synthesis, characterization, and structure–property relationships related to these materials. Furthermore, properties for specific applications of these polymers are briefly summarized, such as absorption and emission spectroscopy, composite mechanical analysis, four-probe conductivity measurements, and electroluminescence.  相似文献   

12.
Magnesium hydroxide [Mg(OH)2] is one of the potential inorganic fillers. In this work, nanoparticles (37±5 nm) of the magnesium hydroxide were prepared using matrix-mediated growth and control technique, and their size was confirmed by X-ray diffraction technique. Nano-Mg(OH)2-SBR and nano-Mg(OH)2-PBR composites with 2–10% (w/w) filler loading were prepared by compounding on laboratory-scale two-roll mill and a compression molding machine. These composites were tested for tensile and physical properties, and the properties were compared with the composites of commercial Mg(OH)2. The incorporation of nanofiller improved the properties of nanocomposites.  相似文献   

13.
The roles of Li2O and B2O3 and heat-treatment condition on crystallization behavior and flowability of leucite–fluoroapatite-based glass-ceramic glazes were investigated. The thermal expansion coefficient, mechanical, and chemical properties of the optimum specimen were determined. Glaze firing was performed in the 650–1100°C interval, in one and two step processes. Based on the results, B2O3 was more effective than Li2O in point of flowability view. Also, the microstructures varied with the adopted firing process, so that the two-step heat-treated sample showed superior mechanical properties than the one-step heat-treated specimens.  相似文献   

14.
Nanocomposites with different concentration of nanofiller were prepared by adding nanosilica to the canola-based polyurethane matrix via in situ polymerization. The effect of nanosilica on the mechanical properties of adhesives was evaluated by tensile tests. Adhesive characteristics on metal–metal and metal–glass bondings were also evaluated by lap shear strength tests. Incorporation of nanosilica into the canola-based polyurethane enhanced both tensile and lap shear strength of synthesized adhesives. Also the effect of nanoparticles on glass transition temperature and thermal stability was investigated by differential scanning calorimetry and thermogravimetric analysis, respectively. The increase of nanosilica content in the polyurethane adhesives, thermal property of the nanocomposites improved.  相似文献   

15.
Cure characteristics and mechanical properties of short nylon fiber reinforced natural rubber–reclaimed rubber blend was studied. Minimum torque, maximum–minimum torque and cure rate were increased by the addition of fiber. Tensile and tear properties were enhanced by the addition of fibers. Introduction of fibers decreased the resilience and abrasion loss. Heat build up and compression set were higher for the composites.  相似文献   

16.
A new low-permittivity polymer–ceramic composite for packaging applications has been developed. The ceramic-reinforced polyethylene and polystyrene composites were prepared by melt mixing and hot molding techniques. Low-loss, low-permittivity Li2MgSiO4 (LMS) ceramics prepared by the solid-state ceramic route were used as the filler to improve the dielectric properties of the composites. The relative permittivity and dielectric loss were increased with the increase in the ceramic loading at radio and microwave frequencies. The mechanical properties and thermal conductivity of the Li2MgSiO4-reinforced polymer–ceramic composite were also investigated. The stability of the relative permittivity of polymer–ceramic composites with temperature and frequency was investigated. The experimentally observed relative permittivity, thermal expansion, and thermal conductivity were compared with theoretical models.  相似文献   

17.
Gelatin–starch-based phase-separated hydrogels were prepared in this study. Corn starch, soluble starch, and hydrated starch were used as the representative starches for the preparation of the hydrogels. Bright field microscopy suggested the formation of phase-separated hydrogels. An increase in the hydrophilic nature of the starch molecules resulted in decrease in the agglomeration of the starch particles within the gelatin matrices. Fourier transform infrared study confirmed the presence of starch particles within the hydrogels. X-ray diffraction studies suggested that the higher degree of crystallinity of corn starch and soluble starch was responsible for the comparative hydrophobic nature of these starch particles. Hydrated starch was found to be amorphous in nature and can be explained by the destruction of the intramolecular associative forces. Stress relaxation and creep recovery studies indicated predominant elastic nature of the hydrogels. Hydrated starch-containing hydrogels were firmer than corn starch and soluble starch because of the better miscibility of the hydrated starch particles within the gelatin matrices. The bulk resistance of the starch-containing hydrogels was higher. This was because of the capability of the starch particles to behave as dielectric medium. Incorporation of starch particles within the gelatin matrix was found to increase the polymer relaxation-mediated drug diffusion. Metronidazole-loaded hydrogels were found to have good antimicrobial activity.  相似文献   

18.
The effect of nano-particles of TiO2 on the mechanical and thermal properties of sugarcane bagasse (SCB)–ethylene co-vinyl acetate (EVA) composite was investigated. Composite materials were prepared using a melt-mix intercalation method on a rheomex mixer coupled with a single screw extruder. differential scanning calorimeter (DSC), thermogravimetric (TG) analyser and an Instron, were used to probe the thermal and mechanical properties of the samples. Composites with TiO2 were compared with those without TiO2 but with the same content of sugarcane bagasse (SCB). After the addition of TiO2, the tensile strength increased by 10%, from 11.26 MPa for neat EVA, which correlated with the enthalpy of fusion, however, the tensile strength decreased by 18% at higher SCB loading. Elongation at break decreased from 463 to 0% as the filler (SCB) was increased which was inversely proportional to the modulus. The composite showed an improved thermal stability with the addition of TiO2.  相似文献   

19.
Organoclay of the type Cloisite® 20A (C-20A) with two structurally different but semicrystalline polymer matrices was studied. Polycaprolactone (PCL), a linear, biodegradable polymer, and ethylene vinyl acetate (EVA), a branched copolymer, were chosen to prepare polymer clay nanocomposites via the melt-blending method. The results show that the structure of a polymer matrix plays a significant role towards compatibilization with the silicate layers of the clay. Scanning electron microscopy and X-ray diffraction analyses revealed an exfoliated-intercalated mixed morphology for the PCL matrix. However, for the EVA matrix, silicate layers agglomerated to form tactoids and resulted primarily in an intercalated morphology. Fourier transform infrared spectroscopy was used to determine the nature of the interactions between the polymer and the filler. The thermal properties were investigated using thermogravimetric analysis and indicated that, with an increase in clay loading, the thermal stability was reduced for both matrices. Tensile tests suggested that Young’s modulus improved for the EVA matrix with an increase in clay dosage whereas for PCL the modulus was found to be highest for 8% clay loading.  相似文献   

20.
The temperature used in the chemical reduction of graphene oxide (GO) with hydroiodic acid has a significant influence on the removal of surface oxygenated functional groups, on the residual iodine species and on the rupture, stacking and graphitization of the graphene sheets in the reduced graphene oxides. The modification in the characteristics of the reduced graphene oxides induces changes in the surface area, the exposition of reduced graphene oxide entities and in the concentration of small CdS nanocrystals with strong confinement effect on the CdS-reduced graphene oxide hybrids. The hybridization of the reduced graphene oxide with CdS modifies in different way their photocatalytic behavior for hydrogen production from aqueous solutions of Na2S and Na2SO3 under simulated sunlight irradiation. Only the hybrid formed between the CdS and the reduced graphene oxide treated at higher temperature showed improved hydrogen production rate respect to the bare CdS reference associated with the better conductivity of the reduced graphene oxide and with the increase in the concentration of small CdS nanocrystals sith strong confinement effect observed in the hybrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号