首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samdae Park  Jin Chul Kim 《Polymer》2011,52(10):2170-240
A series of soluble poly(amic acid) precursors were prepared from a new carbzole-containing monomer, 3,3′-bis[9-carbazole(ethyloxy)biphenyl]-4,4′-diamine (HAB-CBZ) by polycondensation with four different aromatic dianhydrides: pyromellitic dianhydride (PMDA), 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3′,4,4′-diphenylethertetracarboxylic dianhydride (ODPA), and 3,3′,4,4′-diphenylsulfonyltetracarboxylic dianhydride (DSDA). From the precursors, nanoscale thin films of polyimides (PIs) were prepared by spin-coating and subsequent thermal imidization. All the PIs exhibited excellent thermal and dimensional stability. In particular, the PIs based on the PMDA and BPDA units revealed excellent chemical resistance to organic solvents, in addition to the high thermal and dimensional stability, which are required for the fabrication of high performance memory devices in three-dimensionally multi-stack structure. Devices fabricated with nanoscale thin PI films exhibited excellent unipolar write-once-read-many-times (WORM) memory behavior with a high ON/OFF current ratio of up to 1010. The active PI films were found to operate at 2.2-3.3 V, depending on the chemical structures. This study found that the imide rings as local charge trap sites are necessary to enhance the memory performance in addition to carbazole moiety. All the results collectively indicate that the thermally, dimensionally and chemically stable PIs of this study are a promising material for the mass production at low cost of high performance, programmable nonvolatile WORM memory devices that can be operated with low power consumption in unipolar switching mode.  相似文献   

2.
2,2′‐Position aryl‐substituted tetracarboxylic dianhydrides including 2,2′‐bis(biphenyl)‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride and 2,2′‐bis[4‐(naphthalen‐1‐yl)phenyl)]‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride were synthesized. A new series of aromatic polyimides (PIs) were synthesized via a two‐step procedure from 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride and the newly synthesized tetracarboxylic dianhydrides monomers reacting with 2,2′‐bis[4′‐(3″,4″,5″‐trifluorophenyl)phenyl]‐4,4′‐biphenyl diamine. The resulting polymers exhibited excellent organosolubility and thermal properties associated with Tg at 264 °C and high initial thermal decomposition temperatures (T5%) exceeding 500 °C in argon. Moreover, the fabricated sandwich structured memory devices of Al/PI‐a/ITO was determined to present a flash‐type memory behaviour, while Al/PI‐b/ITO and Al/PI‐c/ITO exhibited write‐once read‐many‐times memory capability with different threshold voltages. In addition, Al/polymer/ITO devices showed high stability under a constant stress or continuous read pulse voltage of ? 1.0 V. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
A functional polyimide (6F/CzTPA PI), 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA)/ 4,4′-diamino-4″-N-carbazolyltriphenylamine (DACzTPA), was synthesized in our present work for electrical resistive memory device applications. Semiconductor parameter analysis on the polyimide memory devices indicates that the synthesized polyimide possesses a volatile static random access memory (SRAM) characteristic with an ON/OFF current ratio of about 105 at the threshold voltage of around 1.5 V and −1.8 V. In addition, the device using the 6F/CzTPA PI as the active layer reveals excellent long-term operation stability with the endurance of reading cycles up to 108 under a voltage pulse and retention times for at least 8 h under constant voltage stress (−1 V). The charge transfer mechanisms and the roles of the donor and acceptor components in the PI macromolecules associated with the electrical switching effect are elucidated on the basis of the experimental and quantum simulation results.  相似文献   

4.
Two binary polyimide (PI) blends having a common monomer (diamine or dianhydride) were prepared. The first system was composed of PIs obtained from an alicyclic and flexible dianhydride, namely 5‐(2,5‐dioxotetrahydrofurfuryl)‐3‐methyl‐3‐cyclohexene‐1,2‐dicarboxylic acid anhydride (DOCDA) and two aromatic diamines: 4,4′‐oxydianiline (ODA) and p‐phenylenediamine, respectively. In the second system, ODA was combined with DOCDA and (hexafluoroisopropyldiene)diphthalic dianhydride (6FDA). Films of the resulted blends were transparent, suggesting their homogeneity. According to differential scanning calorimetry data, the existence of a single Tg intermediate to those of the pure PIs confirmed the miscibility of blends. Incorporation of aliphatic and asymmetric DOCDA moieties, hexafluoropropyldiene groups and ether linkages in the molecular structure of PIs reduced the charge transfer interactions and significantly increased transparency and optical gap energy, especially for the poly(DOCDA‐ODA)/poly(6FDA‐ODA) blend. These interactions are also reflected in viscosity dependence on shear rate, indicating that they are slightly stronger when the aromatic 6FDA component prevails. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

5.
Two new poly(imide)s (PIs) are derived from a biphenylspirobisindane-diamine monomer and the commercial dianhydrides: 4,4′-hexafluoroisopropyliden diphthalic anhydride ( 6FDA ) and pyromellitic anhydride ( PMDA ). Using polycondensation reactions, these new PIs were synthesized, in high yields (>95%), successfully. The presence of the spirocenter in the main chain of newly synthesized PIs make them soluble in most common organic solvents, whereas the rigidity of the dianhydride monomer makes them be thermically stable at about 500 °C (Td10%). PI derived from 6FDA had 1.2-time higher permeability to the gases, based on gas transport measurements, than those derived from PMDA , which showed slightly higher selectivity values. Nevertheless, both PIs of intrinsic microporosity (PIMs-PI) are more selective to gas pairs, considerably, compared to the previously reported PIs that have same dianhydride in the monomer spirocenter, but instead of biphenyl has an oxodibenzene moiety ( PI-1-6FDA ) one. In this work, correlation between the structural rigidity of PIMs-PI and their selectivity to the gases ( PIM-PI-B > PIM-PI-A > PI-1-6FDA ) is reported. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48944.  相似文献   

6.
Two binary polyimide (PI) blends having a common monomer, diamine and dianhydride, were prepared. The first system was composed of PIs obtained from an alicyclic and flexible dianhydride, namely 5‐(2,5‐dioxotetrahydrofurfuryl)‐3‐methyl‐3‐cyclohexene‐1,2‐dicarboxylic acid anhydride (DOCDA) and two aromatic diamines, 4,4′‐oxydianiline (ODA) and p‐phenylenediamine (PPD), respectively. In the second system, ODA was combined with DOCDA and (hexafluoroisopropyldiene)diphtalic dianhydride (6FDA). Incorporation of aliphatic and asymmetric DOCDA moieties, hexafluoropropyldiene groups and ether linkages in the molecular structure of PI blends, poly(DOCDA/PPD)/poly(DOCDA‐ODA) and poly(6FDA‐ODA)/poly(DOCDA‐ODA) influenced the surface tension parameters, surface and interfacial free energy, and the work of spreading of water, maintaining the surface hydrophobic characteristics of both systems. In addition, it has been found out that surface hydrophobicity and surface roughness are properties that can be correlated with the red blood cells and platelets compatibility. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

7.
Soluble polyimides (PIs) were prepared as random or multiblock types with 4,4′‐(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (s‐BPDA) as acid dianhydride components and 4,4′‐bis(m‐aminophenoxy) diphenyl sulfone (m‐BAPS) as a diamine component by a one‐pot process and used to improve the brittleness of the cyanate ester resin. Random‐type PIs were more effective as modifiers than multiblock‐type PIs. The morphologies of the modified resins depended on PI structure, molecular weight, and concentration. The most effective modification of the cyanate ester resin was attained because of a heterogeneous phase structure composed of a flat matrix phase and phase‐inverted structures of the modified resin; a 15 wt % inclusion of a random PI (weight‐average molecular weight = 63,400) composed of 6FDA, s‐BPDA, and m‐BAPS (0.5/0.5/1.0 molar ratio) led to a 65% increase in the fracture toughness for the modified resin with a slight loss of flexural strength and a retention of flexural modulus and glass‐transition temperature, compared with the values for the unmodified resin. Water absorptivity of the modified resin was comparable to that of the unmodified resin up to 400 h, and then, water absorption of the modified resins increased considerably. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1–11, 2003  相似文献   

8.
In this work, electrospinning technique was used to prepare low dielectric constant membranes. First, three kinds of polyimide (PI) fiber membranes were fabricated by electrospinning of poly(amic acid) (PAA) solutions which are from polycondensation of 4,4′‐oxidianiline (ODA) and three dianhydrides, pyromellitic dianhydride (PMDA), 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluropropane dianhydride (6FDA) and 1,2,4,5‐cyclohexanetetracarboxylic dianhydride(HPMDA), followed by imidization at higher temperature. The relationship of the fiber morphology, thermostability and dielectric properties of the membranes with the polymer structure were discussed. Under the same conditions, PAAs with more flexible structure are easier to form low viscosity solution and fabricate high pore fraction membranes which are low dielectric constant materials. Under the coupling effect of fluorine‐containing groups and contribution of pores, the dielectric constant of 6FDA‐containing PI is lowered to 1.21 at 1 KHz with lower dielectric loss which accords with the calculated one. Also the 5% weight loss temperature of the three kinds of PIs is all higher than 400°C. The formed electrospun membranes are thermostable low dielectric constant materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43081.  相似文献   

9.
The development of optical films is highly desirable for applications in flexible displayers. In this work, a copolyimide (co-PI) film with high thermal stability and high transparency was prepared by the copolymerization of 2,2′-bis(trifluoromethyl)-4,4′-diaminodiphenyl ether, cyclobutanetetracarboxylic dianhydride, and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA). The effects of aliphatic dianhydride and fluorine dianhydride monomers on the optical, thermal, and mechanical properties of the co-PIs were discussed in detail based on the experimental results and theoretical simulations. We found that the preparation of polyimide (PI) based on the combination of two dianhydrides could obtain the PI film with excellent comprehensive performance due to nonconjugated structure and strong electron-withdrawing effect. Through the structure and composition optimization, a PI film of PI-6FDA-70 with Tg of 300 °C, Td10% more than 500 °C, the average transparency of 90% and the elongation at the breakage more than 8% was prepared. Such molecular design provides a practical approach to develop high-performance colorless PI films. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48603.  相似文献   

10.
We report a new method for the preparation of asymmetric diamines using 4,4′‐oxydianiline (4,4′‐ODA) as the starting material. By controlling the equivalents of bromination agent, N‐bromosuccinimide, we were able to attach bromide and phenyl substituents at the 2‐ or 2,2′,6‐positions of 4,4′‐ODA. Thus, four new asymmetric aromatic diamines, 2‐bromo‐4,4′‐oxydianiline (6), 2,2′,6‐tribromo‐4,4′‐oxydianiline (7), 2‐phenyl‐4,4′‐oxydianiline (8) and 2,2′,6‐triphenyl‐4,4′‐oxydianiline (9), were synthesized by this method. Their structural asymmetry was confirmed using 1H NMR spectroscopy. Asymmetric polyimides (PI10–PI13) were prepared from these diamines and three different dianhydrides (pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride) in refluxing m‐cresol. The formed polyimides, except PI10a derived from 6 and PMDA, were all soluble in m‐cresol without premature precipitation during polymerization. These polyimides with inherent viscosity of 0.41–0.96 dL g?1, measured at a concentration of 0.5 g dL?1 in N‐methyl‐2‐pyrrolidone at 30 °C, can form tough and flexible films. Because of the structural asymmetry, they also exhibited enhanced solubility in organic solvents. Especially, polyimides PI11a and PI13a derived from 7 and 9 with rigid PMDA were soluble in various organic solvents at room temperature. The structural asymmetry of the prepared polyimides was also evidenced from 1H NMR spectroscopy. In the 1H NMR spectrum of PI11a, the protons of pyromellitic moiety appeared in an area ratio of 1:2:1 at three different chemical shifts, which were assigned to head‐to‐head, head‐to‐tail and tail‐to‐tail configurations, respectively. These polyimides also exhibited good thermal stability. Their glass transition temperatures ranged from 297 to 344 °C measured using thermal mechanical analysis. © 2013 Society of Chemical Industry  相似文献   

11.
Polyimides (PIs) based on 3,3′,4,4′‐tetracarboxylicdiphenyl ether dianhydride, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride, 4,4′‐diaminodiphenylsulfone and 4,4′‐methylenedianiline were synthesized. They are easily dissolved in many strong and polar solvents like dimethylformamide, N,N‐dimethylacetamide, 1‐methyl‐2‐pyrrolidinone, and dimethylsulfoxide. A new kind of anhydrous proton conducting system based on PI/H3PO4 and PI/H3PO4/imidazole (Imi) blends was prepared. The chemical oxidation stability of the composite membranes was studied. The flexible PIs have better chemical oxidation stability. The addition of phosphoric acid can accelerate the degradation process of PIs, while the addition of Imi in PI/H3PO4 blends can greatly improve their chemical oxidation stability, which becomes much better than that of pure PIs. The proton conductivity of PI/H3PO4 blends is still lower compared with that of polybenzimidazole/H3PO4 blends. After the addition of Imi, the anhydrous proton conductivity of PI/H3PO4 blends increases significantly with increasing Imi content. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
A series of soluble aromatic polyimides were prepared from 2,2′-diphenyl-4,4′-biphenyl diamine (DPBD), 2,2′-bis(biphenyl)-4,4′-biphenyl diamine (BBPBD), 2,2′-bis[4-(naphthalen-1-yl)phenyl]-4,4′-biphenyl diamine (BNPBD) and 2,2′-bis(3,5-dimethoxyphenyl)-4,4′-biphenyl diamine (BMPBD) by polycondensation with 2,2′-bis[4′-(3′′,4′′,5′′-trifluorophenyl)phenyl]-4,4′,5,5′-biphenyl tetracarboxylic dianhydride via a two-step procedure. The resulting polymers were fully characterized and they exhibited excellent organosolubility, high thermal and dimensional stability. Resistive switching devices with the configuration of Al/polymer/ITO were constructed from these polyimides by using conventional solution coating process. Devices with the active layer based on DPBD, BBPBD and BNPBD exhibited nonvolatile and rewritable flash type memory characteristics with the turn-on voltage at ?2.0 to ?3.0 V and the turn-off voltage at 2.0–3.0 V. Whereas, device based on BMPBD demonstrated a bipolar write-once read-many times (WORM) memory capability with the writing voltage around ±3.0 V. The ON/OFF current ratio of these devices was of about 106 and the retention times can be as long as 104 s.  相似文献   

13.
A novel aromatic diamine, 1,1‐bis(4‐amino‐3,5‐dimethylphenyl)‐1‐(3,4,5‐trifluorophenyl)‐2,2,2‐trifluoroethane, containing a pendant polyfluorinated phenyl group, a trifluoromethyl group, and methyl groups ortho‐substituted to the amino groups in the structure was synthesized and characterized. The diamine was polymerized with several aromatic dianhydrides, including 3,3′,4,4′‐biphenyltetracarboxylic dianhydride, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride, 4,4′‐oxydiphthalic anhydride, and 4,4′‐hexafluoroisopropylidene diphthalic anhydride, via a high‐temperature one‐step procedure to afford four polyimides (PIs) with inherent viscosities of 0.47–0.70 dL/g. The PIs exhibited excellent solubilities in a variety of organic solvents. They were soluble not only in polar aprotic solvents but in many common solvents, such as cyclopentanone, tetrahydrofuran, and even toluene at room temperature. The tough and flexible PI films cast from the PI solutions exhibited good thermal stabilities and acceptable tensile properties. The glass‐transition temperatures were in the range 312–365°C, and the 5% weight loss temperatures were all higher than 480°C in nitrogen. The films had tensile strengths in the range 76–99 MPa, tensile moduli of 2.2–2.8 GPa, and elongations at break of 5–8%. In addition, the PI films exhibited excellent transparency in the visible light region with cutoff wavelength as low as 302 nm and transmittance higher than 88% at the wavelength of 450 nm. The PI films showed low dielectric constants ranging from 2.50–2.68 and low moisture absorptions of less than 0.56%. The good combined properties of the PIs mainly resulted from the synergic effects of the different substituents. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Fluorinated polyimides were prepared from 2,2′,6,6′-tetrafluorobenzidine and four conventional dianhydride monomers by a solution polycondensation reaction followed by a chemical imidization. Polyimide based on 2,2′,6,6′-tetrafluorobenzidine and hexafluoroisopropylidene bis(3,4-phthalic anhydride) (6FDA) is soluble in organic solvents such as NMP, DMA, DMF, THF, chloroform, and acetone while those based on 2,2′,6,6′-tetrafluorobenzidine and pyromellitic dianhydride (PMDA), benzophenone-3,3′,4,4′-tetracarboxylic acid dianhydride (BTDA), diphenylether-3,3′,4,4′-tetracarboxylic acid dianhydride (ETDA) are not. Polyimide from 2,2′,6,6′-tetrafluorobenzidine and 6FDA possesses high optical transparency at 350–700 nm and has a in-plane refractive index of 1.558 at 632.8 nm. All polyimides exhibit glass transition temperatures above 350°C. They also possess very high thermal stability. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1605–1609, 1998  相似文献   

15.
To determine the thermal characteristics of linear and crosslinked polyimides (PIs), BTDA, ODPA, and 6FDA were used to synthesize polyimides. Thermal degradation temperature and glass transition temperature of the resulting PIs were measured using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). To measure the change in modulus and coefficient of thermal expansion (CTE) depending on dianhydride structure, a dynamic mechanical analyzer (DMA) and thermo‐mechanical analyzer (TMA) were used. The thermal degradation and glass transition temperature properties of linear PIs varied according to whether the linear chain adopted a bulky or flexible structure. Dynamic modulus and thermal expansion values of linear polyimides also showed good agreement with the TGA and DSC results. As we expected, linear polyimide with bulky 6FDA groups showed better thermal behavior than the flexible polyimides. Crosslinked polyimide nadic end‐capped (norbornene) with a bulky dianhydride group had a lower thermal degradation temperature and higher CTE than flexible BTDA and ODPA polyimides. Our results indicate that the mobility of the dianhydride group affects the thermal behaviors of linear and crosslinked polyimides in different ways. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41412.  相似文献   

16.
The structural transformation strategy of cis‐5‐norbornene‐endo‐2,3‐dicarboxylic anhydride (NA) was performed by esterification. The double bond on the diester of NA showed adequate hydrosilylation reactivity with Si? H bonds of phenyl‐containing disiloxane. Thereby, a new siloxane‐containing alicyclic dianhydride, 5,5′‐exo‐(1,3‐dimethyl‐1,3‐diphenyl‐disiloxane‐1,5‐diyl)bisbicyclo[2,2,1]heptane‐2,3‐endo‐dicarboxylic anhydride 6 was successfully synthesized starting from NA, 1,3‐dimethyl‐1,3‐diphenyldisiloxane and platinum complex catalyst. The whole synthetic route of dianhydride 6 consisted of esterification, hydrosilylation, saponification, acidification, and dehydration. A series of polyimides (PIs) were prepared from dianhydride comonomers of 6 and 4,4′‐biphenyltetracarboxylic dianhydride (BPDA) in different molar ratio together with the diamine 4,4′‐oxydianiline (ODA). The thermal and mechanical properties of PIs showed somewhat decrease with increasing content of dianhydride 6. The solubility of PIs increased with the increasing content of dianhydride 6, and further calculation from Bragg's equation indicated that average interchain distance (d‐spacing value) increased with increasing content of siloxane and alicyclic segments in the backbone of PIs. It was revealed that the hydrophobicity of PIs increased with the increasing content of dianhydride 6 . Polyimide 7g , which was prepared from 100% 6 and ODA, showed water adsorption of less than 0.7% and contact angle against water of 101.1°. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci., 2013  相似文献   

17.
A series of novel phenylethynyl‐endcapped polyimide oligomers were prepared by polycondensation of an aromatic diamine mixture of 1,3‐bis(4‐aminophenoxy) benzene (1,3,4‐APB) and 3,4′‐oxydianiline (3,4′‐ODA) with different aromatic dianhydrides including 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐(hexafluoro isopropylidene)diphthalic anhydride (6FDA), 4,4′‐oxydiphthalic anhydride (ODPA), and 4,4′‐[2,2,2‐trifluoro‐1‐(3′,5′‐bis‐(trifluoro‐methyl)phenyl)ethylidene]diphthalic anhydride (9FDA) in the presence of 4‐phenyl‐ethynylaniline (PEA) as endcapping agent in aprotic solvent at elevated temperature. The chemical structures, thermal behavior, and melt rheological properties of the synthesized polyimide oligomers were investigated. Experimental results indicated that the fluorinated polyimide oligomers derived from 6FDA (PI‐2) and 9FDA (PI‐4) are amorphous solid resins and exhibited lower melt viscosities than those prepared from the unfluorinated aromatic dianhydrides such as BPDA and ODPA. The BPDA‐based polyimide oligomers with a molar ratio of 1,3,4‐APB/3,4′‐ODA = 50:50 (PI‐5) showed lower melt viscosity than those derived from a mixture of 1,3,4‐APB and 3,4′‐ODA with molar ratios of 75:25 and 100:0, respectively. In addition, the melt viscosity of the polyimide oligomers increased obviously with increasing of the polymer calculated molecular weights. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

18.
A series of polyimides (PIs) with various side‐chain structures were prepared via copolymerization of pyromellitic dianhydride, 3,3′‐dimethyl‐4,4′‐methylenediamine and three functional diamines: 4‐(4‐octyloxybenzoyloxy)biphenyl‐3′,5′‐diaminobenzoate (C8‐BPDA), 4‐octyloxybiphenyl‐3′,5′‐diaminobenzoate (C8‐PDA) and 4‐(4‐butoxybenzoyloxy)biphenyl‐3′,5′‐diaminobenzoate (C4‐BPDA). PIs derived from C8‐BPDA and C4‐BPDA exhibited excellent rubbing resistance in comparison with PI from C8‐PDA and the pretilt angle could be controlled over 89° after rubbing. Thermogravimetric analysis showed that the thermal degradation of PIs under nitrogen atmosphere occurred above 320 °C, and PI derived from C8‐BPDA showed the best thermal stability. Wide‐angle X‐ray diffraction patterns indicated an amorphous morphology of the PIs, and the PIs also had outstanding solubility in polar aprotic solvents. The resultant PI films were light colored and maintained high transparency in the visible light region. By increasing the rigidity of side‐chains, the rubbing resistance and the thermal stability of PIs could be promoted at the same time. © 2012 Society of Chemical Industry  相似文献   

19.
秦琳  李继定  郑冬菊  王涛 《化工学报》2013,64(2):590-599
针对苯/环己烷混合物体系的特点,采用两种新型侧链二胺3,5-二氨基苯甲酸苯酯(PDA)和3,5-二氨基苯甲酸-4-三氟甲基苯酯(FPDA),制备了一系列由不同二酐与二胺单体如4,4'-二氨基二苯醚(ODA)和3,5-二氨基苯甲酸(DABA)聚合而成的用于渗透汽化分离苯/环己烷的聚酰亚胺膜,对其结构和各项性质进行了表征,并对膜材料的微观结构与宏观分离性能之间的关系进行了较为深入的研究。随着侧链二胺的引入,聚酰亚胺膜的分离效率随之持续增大,分离能力得以改善。渗透汽化实验结果表明,以6FDA为二酐单体的两类聚酰亚胺膜具有较优异的分离性能。乙二醇交联的6FDA-FPDA/ODA/DABA(1:7:2)膜综合渗透汽化分离性能最优。在50℃时,对于含苯50 %(质量)的苯/环己烷混合物,其渗透通量为9.84 kg·μm·m-2·h-1,分离因子达6.1。  相似文献   

20.
A series of colorless and transparent polyimide (PI) hybrids were synthesized from 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 2,2′-bis(trifluoromethyl)benzidine (TFB) with various organoclay contents, via solution intercalation polymerization to form poly(amic acid)s (PAAs). In addition, copolyimide (Co-PI) hybrids were synthesized from TFB with different ratios of 6FDA and pyromellitic dianhydride in combination with the organoclay. The thermo-optical properties, morphologies, and gas permeations of the Homo-PI and Co-PI hybrid films were examined for organically modified hectorite (STN) loadings ranging from 0 to 40 wt%. The properties of Homo-PI hybrid films were compared with those of films prepared from the Co-PI hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号