首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The laminar distribution of synaptic activity in the primary motor cortex, elicited by stimulation of intracortical, horizontal afferents, was studied in young (12-17 days old) and adult rats using the in vitro brain slice preparation. Connectivity patterns were deduced from current-source density (CSD) analyses of field potential depth profiles and were confirmed by anatomic data of retrograde cell labeling after focal injections of a fluorescent tracer. 2. According to the CSD distributions, horizontal axons in layer II/III provide strong monosynaptic input to dendrites of layer II and III pyramidal cells in a distant column, and weaker monosynaptic input to layer V and VI cells by synapsing on dendritic fields at the border of layer III and V and in deep layer V. When these pathways are activated, layer II/III cells may relay excitatory activity to upper and deep layer V, as well as to other cells in layer II/III of the same column. Axons arising from layer V provide monosynaptic input to pyramidal cells in all layers of neighboring columns, by synapsing in two dendritic fields: one in the superficial layers and the other in middle layer V. Activation of these pathways may generate a disynaptic intracolumnar input from layer II/III cells to middle layer V, as well as to other cells in layer II/III. Similar patterns of synaptic activity were elicited by stimulation from 0.45 to 2 mm distal to the recorded column. There were no apparent differences between young and adult rats in the connectivity patterns revealed by the CSD analyses. 3. Tracer injections in layer III resulted in retrograde labeling of cells in layers II/III and V, at distances > 2 mm from the injection site, whereas injections in layer V resulted in retrograde labeling of cells at long distances in layer V and to a lesser extent in layer II/III. These findings indicate that neurons in layer V project, via horizontal axon collaterals, for long distances within layers III and V, whereas the horizontal axon collaterals of layer III cells are restricted, for the most part, to the superficial layers. 4. Suppression of inhibitory activity by bath application of the gamma-aminobutyric acid-A (GABAA) receptor antagonist bicuculline methiodide (BMI) did not alter the pattern of the CSD distributions. All synaptic currents present in the control medium were enhanced by application of BMI, although the effect was more pronounced on the polysynaptic components.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The focus of the presentation will review the distribution of nitric oxide (NO)-producing sites in the digestive system in mammals and nonmammalian vertebrates and will center on the roles that NO plays in modulating physiological and pathophysiological functions in digestive system.  相似文献   

3.
4.
1. Intracellular responses to stimulation of the cerebral cortex (Cx) and cerebellum were analyzed in thalamocortical neurons (TCNs) in the ventroanterior-ventrolateral (VA-VL) complex of the thalamus and neurons in the thalamic reticular nuclei (RNs) of anesthetized cats, and the contribution of reticular nucleus neurons (RNNs) and thalamic interneurons (TINs) to cerebral and cerebellar inhibition of TCNs was determined. 2. Single TCNs projecting to area 4 or 6 received convergent monosynaptic excitatory and disynaptic inhibitory inputs from both the dentate nucleus (DN) and the interpositus nucleus (IN). These TCNs also received monosynaptic excitatory postsynaptic potentials (EPSPs) and disynaptic inhibitory postsynaptic potentials (IPSPs) from the pericruciate cortex (areas 4 and 6). Each TCN received the strongest excitatory and inhibitory inputs from the cortical area to which that TCN projected, and weaker inhibitory inputs from adjacent cortical areas. 3. RNNs were identified morphologically by intracellular injection of horseradish peroxidase (HRP). Stimulation of the brachium conjunctivum (BC) evoked disynaptic EPSPs with a long decay phase in RNNs in the anterior ventrolateral part of the RN. Single RNNs received convergent disynaptic excitatory inputs from both the DNA and the IN. Stimulation of the Cx produced monosynaptic long-lasting EPSPs with two different latencies in these RNNs: early EPSPs with latencies of 0.9-2.1 ms and late EPSPs with latencies of 1.8-3.5 ms. Collision experiments with BC- and Cx-evoked EPSPs in RNNs indicated that BC-evoked disynaptic EPSPs and Cx-evoked early EPSPs were produced by axon collaterals of TCNs to RNNs. The latencies of the Cx-evoked late EPSPs in RNNs were almost identical to those of Cx-evoked monosynaptic EPSPs in TCNs, indicating that corticothalamic neurons (CTNs) exert monosynaptic excitatory effects on RNNs and TCNs. 4. Stimulation of the Cx produced IPSPs in TCNs with short latencies of 1.8-2.7 ms and longer latencies of > or = 2.8 ms. The Cx-evoked early IPSPs with latencies of 1.8-2.7 ms were mediated by RNNs. The origin of Cx-evoked late IPSPs with latencies of > or = 2.8 ms in TCNs was twofold, Cx-induced early IPSPs in TCNs were facilitated by conditioning cortical stimulation that induced late IPSPs in the TCNs. The same conditioning cortical stimulation also facilitated BC-evoked disynaptic IPSPs. The time course of this facilitatation indicated that CTNs produce long-lasting excitation in TINs. These results indicated that Cx-evoked IPSPs with latencies of > 2.7 ms were mediated at least in part by RNNs and inhibitory TINs in the VA-VL complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
A stationary excitation focus produced in rabbit cortex by rhythmical electrodermal paw stimulation was revealed by presentation of testing sound stimuli, which were earlier indifferent for an animal. The multiunit activity in the sensorimotor cortex was recorded. The neuronal pairs were detected with correlated discharges. Analysis of discharges in such pairs revealed the dominant incidence of conjugated impulses with the interval equal or close to 2 s, if the focus had been created by stimulation with the rhythmic interval 2 s. The dominant interval between discharges in a conjugated pair of neurons was equal of close to 3 s, if the rhythmic stimuli positions had been spaced 3 s. It was shown that the rhythmical nature of the dominant focus was maintained at the level of neuronal interactions, i.e., was of a systemic character. The acquired rhythm in conjugated cell activity was observed not only during summation in the moment of excitation transmission to the effector (i.e., when the dominant realized itself in the motor reaction), but within the periods between the testing stimuli.  相似文献   

6.
The mechanisms by which cortical neurons perform spatial and temporal integration of synaptic inputs are dependent, in large part, on the numbers, types, and distributions of their synapses. To further our understanding of these integrative mechanisms, we examined the distribution of synapses on identified classes of cortical neurons. Pyramidal cells in the cat motor cortex projecting either to the ipsilateral somatosensory cortex or to the spinal cord were labeled by the retrograde transport of horseradish peroxidase. Entire soma of selected corticocortical and corticospinal cells were examined using serial-section electron microscopy. The profiles of these somata and the synapses formed with each of these profiles were reconstructed from each thin section with a computer-aided morphometry system. All somatic synapses were of the symmetrical, presumably inhibitory type. For both cell types, these synapses were not homogeneously distributed over the somatic membrane, but were clustered at several discrete zones. The number and density of synapses on the somata of different corticocortical and corticospinal neurons were not significantly different. However, the density of these synapses was inversely correlated with the size of their postsynaptic somata. We discuss the significance of these findings to the integrative properties of cortical neurons.  相似文献   

7.
The activity of neurons of the sensorimotor cortex during the paired combination of stimulations of brain structures (the medial lemniscus, the reticular nucleus of the midbrain tegmentum, and the pyramidal tract), with an interstimulus interval of 1.2 sec, was investigated in awake nonimmobilized rabbits. During the omission of the reinforcing stimulus at a place of its expected delivery, a complicated complex of reorganizations of the impulse activity of the neurons develops, consisting of the reproduction of responses and changes in impulse activity which differ in configuration from them, and which usually appear at later periods. The direct application of acetylcholine to the cortex facilitates the manifestation of both types of reorganizations of the neuronal activity. The application, on the other hand, of atropine suppresses primarily the second type of reorganizations. In addition, acetylcholine increases the total duration of these electrical indices of the temporary connection of the developed reactions, while atropine decreases it.  相似文献   

8.
A study of the morphology and laminar distribution of nonpyramidal neurons in Golgi-Nissl preparations of electrophysiologically verified auditory cortex was carried out in the adult rabbit. Nonpyramidal neurons were located primarily within laminae I-IV and were only infrequently seen in lamina V and VI. In lamina I, four nonpyramidal cell types were observed: (1) small, spine-free horizontal neurons, (2) small, sparsely spined multipolar neurons with radiate dendrites, (3) large, multipolar neurons with fusiform somata and vertically aligned, sparsely spined dendrites, and (4) small, spine-free neurogliform neurons. The horizontal and small multipolar neurons had tangentially running axons confined to lamina I. The large, fusiform cells had descending axons which arborized in lamina II and occasionally reached lamina III. In lamina II and the upper part of lamina III, seven nonpyramidal cell types were observed: (1) spine-free bipolar neurons with vertically aligned dendrites and axonal arbors; (2) large, (3) medium, and (4) small, spine-free and sparsely spined multipolar neurons, all with locally ramifying axons; (5) pear-shaped cells with highly oriented dendrites which branched toward the pial surface and vertically arborizing axons; (6) multipolar cells with tangentially and vertically oriented dendrites and ascending axons which entered lamina I, and (7) tufted cells with local axons. Three types of nonpyramidal cells were observed in lamina IV and the lower part of lamina III: (1) large, multipolar cells with radiate, spine-free dendrites and stout axons which arborized locally, (2) spiny multipolar cells with vertically aligned dendrites and ascending axons which arborized in lamina II and III via long horizontal collaterals, and (3) spine-free bipolar cells with vertical dendrites and axons which arborized in a narrow vertical column adjacent to the dendrites. Nonpyramidal neurons in lamina V and VI were primarily multipolar cells with sparsely spined and spine-free dendrites. A comparison of these data with those of other species indicates that the neuronal organization of the rabbit auditory cortex is similar to that of the sensory cortex of the rodent but is strikingly different from that of carnivores and primates.  相似文献   

9.
10.
Previous reports have argued that single neurons in the ventral premotor cortex of rhesus monkeys (PMv, the ventrolateral part of Brodmann's area 6) typically show spatial response fields that are independent of gaze angle. We reinvestigated this issue for PMv and also explored the adjacent prearcuate cortex (PAv, areas 12 and 45). Two rhesus monkeys were operantly conditioned to press a switch and maintain fixation on a small visual stimulus (0.2 degree x 0.2 degree) while a second visual stimulus (1 degree x 1 degree or 2 degrees x 2 degrees) appeared at one of several possible locations on a video screen. When the second stimulus dimmed, after an unpredictable period of 0.4-1.2 s, the monkey had to quickly release the switch to receive liquid reinforcement. By presenting stimuli at fixed screen locations and varying the location of the fixation point, we could determine whether single neurons encode stimulus location in "absolute space" or any other coordinate system independent of gaze. For the vast majority of neurons in both PMv (90%) and PAv (94%), the apparent response to a stimulus at a given screen location varied significantly and dramatically with gaze angle. Thus, we found little evidence for gaze-independent activity in either PMv or PAv neurons. The present result in frontal cortex resembles that in posterior parietal cortex, where both retinal image location and eye position affect responsiveness to visual stimuli.  相似文献   

11.
In Clione limacina, locomotory rhythm is produced in the central pattern generator by reciprocal activity of two groups of interneurons. Dorsal (D) and ventral (V) phase interneurons activate neurons of the same phase and inhibit neurons of the opposite phase. Which neurotransmitters are used by these interneurons is not clear. In this study, identified follower neurons to V and D interneurons were isolated, and their responses to the local application of potential neurotransmitters were examined. Acetylcholine exerted inhibitory action on the isolated D-phase neurons and excitatory action on V-phase neurons. Glutamate produced excitation in D-phase neurons, and inhibition in V-phase neurons. These results suggest that acetylcholine is the neurotransmitter of D-phase interneurons, while glutamate might be the neurotransmitter of V-phase interneurons.  相似文献   

12.
1. The present studies investigated conditions for the induction of long-term potentiation (LTP) in the local horizontal pathways of layers II/III in the primary motor cortex (MI) of the adult rat. Field potential and intracellular recordings demonstrated synaptic interactions across the superficial layers within MI that could be enhanced transiently by focal application of the gamma-aminobuturic acid-A receptor antagonist bicuculline methiodide (Bic) at the recording site. 2. Field potentials evoked in the superficial MI horizontal pathways increased in amplitude after tetanizing, theta burst stimulation (TBS), but only when Bic was applied transiently at the recording site immediately before TBS. In the absence of Bic, TBS failed to produce long-lasting increases in horizontally evoked field responses. By contrast, TBS delivery during focal Bic application increased field potential amplitudes by 25-35% when measured 25-30 min after stimulation. The amount of potentiation was greater when two converging horizontal inputs were stimulated together but was not increased with higher intensity stimulation. Persistent effects of Bic application alone were evident. However, these effects were small unless Bic application continued until evoked field potential amplitude increase exceeded 200% of baseline. 3. The synaptic nature of field potential increases were confirmed using intracellular recordings of layer II/III neurons located near field potential electrodes. 4. LTP also could be induced without Bic application by cotetanization of vertical pathways simultaneously with horizontal activation. Vertical conditioning alone at 2 Hz, which affects inhibitory efficacy, was shown to transiently relieve depression of successive responses that ordinarily occurs during a burst of three horizontal stimuli. These results suggest that LTP of horizontal pathways may be regulated by spatiotemporal interactions between horizontal and vertical pathways. 5. Horizontal LTP was blocked reversibly by bath application of the N-methyl-D-aspartate (NMDA) antagonist 2-amino-5-phosphonovaleric acid, thereby implicating NMDA-receptor activation in LTP induction for these pathways. 6. The results confirm and extend our previous finding that the potential for activity-dependent modification of synaptic connections exists within the intrinsic horizontal connections of the superficial cortical layers. Synaptic modification across horizontally connected neurons appears to be regulated both by the arrangement of intrinsic circuitry and by the availability of mechanisms for modification at individual synapses. The properties of horizontal connections indicate that they form a spatial substrate and provide an activity-dependent mechanism for plasticity of adult cortical representations.  相似文献   

13.
BACKGROUND: Acetylcholine (ACh) is one of the major excitatory neurotransmitters in the central nervous system, and changes in neural activity induced by anesthesia alter the release of ACh. However, the effects of isoflurane, one of the most widely used volatile anesthetics, on ACh release are not known. The present study attempts to clarify the dose-effect relationship of isoflurane on the in vivo release of ACh in rat brains. METHODS: Changes in the extracellular concentration of ACh and choline in the cerebral cortex and striatum induced by 0.5, 1.0, and 1.5 minimum alveolar concentration (MAC) of isoflurane were determined using a brain microdialysis technique. RESULTS: In the cortex, the ACh release decreased to 30.8+/-10.1 (mean+/-SEM), 10.2+/-4.1, and 8.1+/-2.9% of basal value by increasing doses of isoflurane, and in the striatum, to 73.3+/-4.4, 49.2+/-4.2, and 40.7+/-4.5%. The ACh release rapidly recovered control levels with the discontinuance of isoflurane. Choline concentration was not changed significantly by isoflurane except for a decrease to 74.8+/-4.6% in the striatum by 0.5 MAC. In both the cortex and striatum, the choline concentration decreased with the discontinuance of isoflurane to 70.3+/-13.3, and 68.2+/-5.4%, respectively. CONCLUSION: The fact that all classic anesthetics reported previously, as well as isoflurane, reduce ACh release supports the hypothesis that the suppression of cholinergic cells is, at least in part one of the mechanisms of anesthesia.  相似文献   

14.
Neuronal activity of the cortical representation of the biceps (CRB) and triceps in the cat pericruciate motor cortex and EMG of the forepaw muscles were recorded during the performance of unconditioned (to a stimulation of the dorsal side of the paw) and conditioned (to ventral stimulation) placing reactions of the forepaw (PR). After learning: 1) ventral stimulation acquired the capacity to evoke (with a latency not exceeding 20 ms) the same enhancement of the CRB neuronal activity, as evoked by dorsal stimulation eliciting PR in naive animals; 2) EMG thresholds of biceps response to stimulation of the motor cortex through a microelectrode did not change: 3) likewise unchanged was the relative number and magnitude of CRB neuronal responses to a local tactile stimulation of the ventral side of the contralateral forepaw. The constanct sensory input to the motor cortex after learning apparently acquires the capacity to evoke an enhancement of CRB neuronal activity sufficient for achieving PR.  相似文献   

15.
Observations of single neurons in the primary motor cortex of 1 monkey provided evidence that preliminary perceptual information reaches the motor system before perceptual analysis is complete. Neurons were recorded during a task in which 1 stimulus was assigned to a wrist flexion response and another was assigned to wrist extension. Two stimuli were assigned to a no-go response; each was visually similar to either the flexion or the extension stimulus. When a no-go stimulus was presented, neurons responded with weaker versions of the discharge patterns exhibited to the visually similar stimulus requiring a movement, suggesting that neurons receive partial perceptual information favoring that movement. Functionally separate neuronal populations were identified, and differences in the activations of these provide evidence about the functional effects of preliminary perceptual output on movement control processes. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
Arborization of single corticocortical (CC) axons projecting from the parietal cortex to the motor cortex (Mx) was analysed using an intraaxonal staining technique in the cat. Stem axons arising from cell bodies in area 5 ramified repeatedly into numerous terminal branches in the Mx, forming 2-6 patches (0.2-0.8 mm in diameter) separated by a terminal-free gap. Axon terminals were distributed mainly in layers II and III and sparsely in layers V, VI and I. This feature is quite similar to that of thalamocortical axons and other corticocortical fibres. Thus the patchy organization may be a basic input structure for afferents of the Mx and play a role in generation of adequate motor output patterns in the Mx.  相似文献   

17.
18.
Multineuronal activity was studied in unrestrained cats with bundles of seven electrodes (tips dia. 50 mcm) chronically implanted in the auditory and motor cortex. Spikes of the highest and lowest amplitude were isolated from each neurogram by an amplitude discriminator. Functional connections between neurones located under different electrodes at a distance of up 540 mcm were defined by statistical dependence of the isolated spike series. In the auditory cortex, the distance at which it was possible to detect connections between high amplitude neurones (H-H) did not exceed 450 mcm, while between low amplitude neurones (L-L) it was 270 mcm. In the motor cortex, dependent relations for similar pairs of neurones (H-H) and (L-L) were found at all the studied distances up to 540 mcm. For mixed neuronal pairs (H-L and L-H) functional connections at different distances were differently expressed at various distances.  相似文献   

19.
20.
The interhemispheric connections of somatosensory cortex in the gray-headed flying fox (Pteropus poliocephalus) were examined. Injections of anatomical tracers were placed into five electrophysiologically identified somatosensory areas: the primary somatosensory area (SI or area 3b), the anterior parietal areas 3a and 1/2, and the lateral somatosensory areas SII (the secondary somatosensory area) and PV (pairetal ventral area). In two animals, the hemisphere opposite to that containing the injection sites was explored electrophysiologically to allow the details of the topography of interconnections to be assessed. Examination of the areal distribution of labeled cell bodies and/or axon terminals in cortex sectioned tangential to the pial surface revealed several consistent findings. First, the density of connections varied as a function of the body part representation injected. For example, the area 3b representation of the trunk and structures of the face are more densely interconnected than the representation of distal body parts (e.g., digit 1, D1). Second, callosal connections appear to be both matched and mismatched to the body part representations injected in the opposite hemisphere. For example, an injection of retrograde tracer into the trunk representation of area 3b revealed connections from the trunk representation in the opposite hemisphere, as well as from shoulder and forelimb/wing representations. Third, the same body part is differentially connected in different fields via the corpus callosum. For example, the D1 representation in area 3b in one hemisphere had no connections with the area 3b D1 representation in the opposite hemisphere, whereas the D1 representation in area 1/2 had relatively dense reciprocal connections with area 1/2 in the opposite hemisphere. Finally, there are callosal projections to fields other than the homotopic, contralateral field. For example, the D1 representation in area 1/2 projects to contralateral area 1/2, and also to area 3b and SII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号