首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of acute and chronic administration of cocaine on the antinociception and tolerance to the antinociceptive actions of mu-(morphine), kappa-(U-50,488H), and delta-([D-Pen2,D-Pen5]enkephalin; DPDPE), opioid receptor agonists were determined in male Swiss-Webster mice. Intraperitoneal injection of 40 mg/kg of cocaine by itself produced weak antinociceptive response as measured by the tail-fick test but the lower doses were ineffective. Administration of morphine (10 mg/kg, SC), U-50,488H (25 mg/kg, IP) or DPDPE (10 microg/mouse, ICV) produced antinociception in mice. Cocaine (20 mg/kg) potentiated the antinociceptive action of morphine and DPDPE but had no effect on U-50,488H-induced antinociception. Administration of morphine (20 mg/kg, SC), U-50,488H (25 mg/kg, IP) or DPDPE (20 microg/mouse, ICV) twice a day for 4 days resulted in the development of tolerance to their antinociceptive actions. Tolerance to the antinociceptive actions of morphine and U-50,488H was inhibited by concurrent treatment with 20 or 40 mg/kg doses of cocaine; however, tolerance to the antinociceptive action of DPDPE was not modified by cocaine. It is concluded that cocaine selectively potentiates the antinociceptive action of mu- and delta- but not of the kappa-opioid receptor agonist. On the other hand, cocaine inhibits the development of tolerance to the antinociceptive actions of mu- and kappa- but not of delta-opioid receptor agonists in mice.  相似文献   

2.
CD-1 mice were treated intravenously with streptozotocin, 200 mg/kg, and tested 2 weeks later or treated with 60 mg/kg and tested 3 days later. Both treatments changed the tail flick response of heroin and 6-monoacetylmorphine (6 MAM) given intracerebroventricularly from a mu- to delta-opioid receptor-mediated action as determined by differential effects of opioid receptor antagonists. The response to morphine remained mu. Heroin and 6 MAM responses involved delta1 (inhibited by 7-benzylidenenaltrexone) and delta2 (inhibited by naltriben) receptors, respectively. These delta-agonist actions did not synergize with the mu-agonist action of morphine in the diabetic mice. The expected synergism between the delta agonist, [D-Pen2-D-Pen5]enkephalin (DPDPE), and morphine was not obtained in diabetic mice. Thus, diabetes disrupted the purported mu/delta-coupled response. In nondiabetic CD-1 mice, heroin and 6 MAM produced a different mu-receptor response (not inhibited by naloxonazine) from that of morphine (inhibited by naloxonazine). Also, these mu actions, unlike that of morphine, did not synergize with DPDPE. The unique receptor actions and changes produced by streptozotocin suggest that extrinsic in addition to genetic factors influence the opioid receptor selectivity of heroin and 6 MAM.  相似文献   

3.
The effects of 7-nitroindazole (7-NI), an inhibitor of the neuronal nitric oxide synthase (nNOS) which does not increase blood pressure, on tolerance to the antinociceptive activity of mu-(morphine), kappa-(U-50,488H) and delta-([D-Pen2, D-Pen5]enkephalin, DPDPE) opioid receptor agonists were determined in mice. Male Swiss-Webster mice were made tolerant by twice daily injections of morphine (20 mg/kg, s.c.), U-50,488H (25 mg/kg, i.p.) or DPDPE (20 micrograms/mouse, i.c.v.) for 4 days. When tested on day 5, tolerance to their antinociceptive activity was evidenced by decreased response in chronic drug treated mice in comparison to vehicle-injected mice. Concurrent administration of 7-NI (20, 40 or 80 mg/kg, i.p.) with DPDPE did not modify the development of tolerance to the antinociceptive action of DPDPE. However, 7-NI (40 or 80 mg/kg, i.p.) inhibited the development of tolerance to the antinociceptive activity of morphine and U-50,488H but the lower dose of 7-NI (20 mg/kg, i.p.) was not effective. Chronic administration of 7-NI by itself did not modify the acute response to morphine, U-50,488H or DPDPE. It is concluded that a specific inhibitor of nNOS can inhibit tolerance to the antinociceptive activity of mu- and kappa- but not of delta-opioid receptor agonists in mice.  相似文献   

4.
The study describes a model of chronic intestinal inflammation in mice. Inflammation was induced by the administration of one dose of croton oil (CO) (acute CO) or two doses (chronic CO) of intragastric CO, whereas controls received saline (SS); GI transit was measured with charcoal. Chronic CO induced intestinal inflammation substantiated by optical microscopy, weight loss (20%) and a 25% increase in GI transit. The ED50 values in SS animals were 1.67 +/- 0.13 mg/kg for morphine and 0.038 +/- 0.006 mg/kg for fentanyl; chronic CO significantly decreased the ED50 values to 0.16 +/- 0.03 mg/kg (morphine) and 0.006 +/- 0.0005 mg/kg (fentanyl). Thus the potency of morphine increased 10.4 times and that of fentanyl 6.3 times. The effects of enkephalin, but not those of U-50488H, were also significantly enhanced during chronic CO. The antitransit effects of p.o. loperamide increased 11.7 times during chronic CO. All effects were reversed by specific antagonists. The fraction of the active opioid receptor that mediates the antitransit effects of morphine was evaluated using beta-funaltrexamine. In chronic CO, the doses of beta-funaltrexamine needed to antagonize 1 mg/kg of morphine were significantly higher than in SS and acute CO, and the ED50/KA ratio was 20 times lower. These results suggest an increase in the active concentration of mu-opioid receptors during chronic inflammation.  相似文献   

5.
We examined the effects of mu-opioid receptor agonist and antagonists, and kappa-opioid receptor agonist on the hypoxia/hypoglycemia-induced reduction in 2-deoxyglucose uptake of rat hippocampal slices. Naloxone, a mu-opioid receptor antagonist and (5,7,8)-(+)-3,4-dichloro-N-methyl-N-(7,8,1-pyrrolidinyl)-1-oxaspirol+ ++ (4,5)dec-8-yl)-benzeneacetamide methanesulfonate, U-62,066E, a kappa-opioid receptor receptor agonist, showed neuroprotective actions against the hypoxia/hypoglycemia-induced deficit in glucose uptake. In contrast, morphine exhibited an exacerbating action. These results suggest that blockade of mu-opioid receptor- and stimulation of kappa-opioid receptor-mediated functions has a protective role against the hypoxia/hypoglycemia-induced decreases in glucose metabolism in hippocampal slices. Chronic administration of morphine (10 mg/kg) for 9 days affected neither the basal nor the hypoxia/hypoglycemia-induced reduction in 2-deoxyglucose uptake. Rats treated with morphine chronically exhibited not only tolerance to the analgesic effect but also tolerance to the exacerbating action. However, chronic morphine did not modify U-62,066E-induced neuroprotection. These findings indicate that the receptor mechanisms of neuroprotection produced by the activation of kappa-opioid receptors may not be involved in mu-opioid receptor function.  相似文献   

6.
BACKGROUND: The current study aimed to assess whether local administration of morphine could block the development of hyperalgesia and allodynia in a rat model of osteotomy or bone damage. METHODS: Withdrawal responses to mechanical and thermal stimuli applied to the plantar surface of the hind paw were measured before and after bone damage. The bone was injured by drilling a 1-mm hole through the tibia during short-lasting general anesthesia. In separate groups of rats, the effects of administering morphine (20-80 microg), either into the marrow cavity or systemically, on the development of hyperalgesia and allodynia after bone damage were assessed. In an additional group of rats, a selective mu-opioid receptor antagonist, clocinnamox (0.15 mg), was administered into the marrow cavity before the administration of morphine (40 microg). RESULTS: In animals that received no drug treatment, hyperalgesia and allodynia peaked 2 h after injury. Injection of morphine (40 and 80 microg) into the marrow cavity immediately after bone injury prevented the development of hyperalgesia and allodynia. Clocinnamox (0.15 mg) injected into the marrow cavity before administration of morphine blocked the antihyperalgesic effect of morphine. CONCLUSION: This study shows that local application of a low dose of morphine effectively blocks the development of hyperalgesia and allodynia in a rat model of bone damage through mu-opioid receptor action. These findings provide further evidence that local application of morphine at the time of orthopedic surgery, bone graft, or bone marrow harvesting may reduce the amount of postoperative pain.  相似文献   

7.
Selective opioid-receptor agonists were tested in combination with cocaine to determine the effect on the motor activity of rats. Cocaine produced dose-dependent increases in locomotor activity (distance traveled). The cocaine-induced increase in locomotor activity was potentiated by the selective delta-opioid receptor agonist [D-Pen2-D-Pen5]enkephalin (DPDPE). This potentiation was blocked by the general opioid receptor antagonist naltrexone, as well as by the selective opioid receptor antagonists beta-FNA (mu-opioid receptor) and naltrindole (delta-opioid receptor). DPDPE also potentiated the increase in locomotor activity produced by the selective dopamine reuptake inhibitor GBR12909, but not that produced by the direct dopamine receptor agonist apomorphine. Cocaine-induced motor activity was potentiated by the activation of central delta-opioid receptors. The synergistic effect seen with delta-opioid receptor activation may involve a mu-opioid receptor component, and is probably mediated via a dopaminergic pathway.  相似文献   

8.
Calcitonin gene related peptide (CGRP), one of the most abundant peptides in the spinal cord, is localized in primary afferents and released following nociceptive stimuli. Its colocalization and corelease with substance P, a well-known nociceptive neuropeptide, support the importance of CGRP in pain mechanisms. However, its distinctive function in that regard remains to be fully established. Recently, we reported that increases in CGRP-like immunostaining and decrements in specific 125I-labelled human CGRP alpha ([125I]hCGRP alpha) binding sites in the spinal cord were correlated with the development of tolerance to the spinal antinociceptive action of a mu opioid agonist, morphine. The goal of the present study was to investigate whether the development of tolerance to other classes of opioids, namely, delta and kappa agonists, can also alter CGRP-like immunostaining and receptors in the rat spinal cord. The antinociceptive effects of all opioids were monitored by the tail-immersion test. Tolerance to their antinociceptive properties was induced by the infusion for 7 days of mu (morphine sulfate, 7.5 micrograms/h), delta D([D-Pen2,D-Pen5]enkephalin (DPDPE), 2.0 micrograms/h), and kappa (U-50488H, 10.0 micrograms/h) related agonists at the spinal level (L4), using osmotic minipumps. We confirmed that rats chronically treated with morphine showed significant decreases in [125I]CGRP alpha binding in laminae I, II, and III of the L4 spinal cord, while CGRP-like immunostaining was increased in these same laminae. Similar effects were observed following a treatment with the delta agonist, DPDPE, while the kappa agonist, U-50488H, apparently only slightly decreased [125I]CGRP alpha] binding in lamina II. Binding in other laminae and CGRP-like immunostaining were not affected. These results suggest a specific interaction between spinal CGRP systems and the development of tolerance to the spinal antinociceptive effects of mu- and delta-related agonists.  相似文献   

9.
The mu-opioid receptor mediates the analgesic and addictive properties of morphine. Despite the clinical importance of this G-protein-coupled receptor and many years of pharmacological research, few intracellular signaling mechanisms triggered by morphine and other mu-opioid agonists have been described. We report that mu-opioid agonists stimulate three different effectors of a phosphoinositide 3-kinase (PI3K)-dependent signaling cascade. By using a cell line stably transfected with the mu-opioid receptor cDNA, we show that the specific agonist [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DAMGO) stimulates the activity of Akt, a serine/threonine protein kinase implicated in protecting neurons from apoptosis. Activation of Akt by DAMGO correlates with its phosphorylation at serine 473. The selective PI3K inhibitors wortmannin and LY294002 blocked phosphorylation of this site, previously shown to be necessary for Akt enzymatic activity. DAMGO also stimulates the phosphorylation of two other downstream effectors of PI3K, the p70 S6 kinase and the repressors of mRNA translation, 4E-BP1 and 4E-BP2. Upon mu-opioid receptor stimulation, p70 S6 kinase is activated and phosphorylated at threonine 389 and at threonine 421/serine 424. Phosphorylation of p70 S6 kinase and 4E-BP1 is also repressed by PI3K inhibitors as well as by rapamycin, the selective inhibitor of FRAP/mTOR. Consistent with these findings, DAMGO-stimulated phosphorylation of 4E-BP1 impairs its ability to bind the translation initiation factor eIF-4E. These results demonstrate that the mu-opioid receptor activates signaling pathways associated with neuronal survival and translational control, two processes implicated in neuronal development and synaptic plasticity.  相似文献   

10.
The effects of chronic administration of [D-Pen2, D-Pen5]enkephalin and [D-Ala2, Glu4]deltorphin II, the selective agonists of the delta 1- and delta 2-opioid receptors, on the binding of [3H]MK-801, a noncompetitive antagonist of the N-methyl-D-aspartate receptor, were determined in several brain regions of the mouse. Male Swiss-Webster mice were injected intracerebroventricularly (i.c.v.) with [D-Pen2, D-Pen5]enkephalin or [D-Ala2, Glu4]deltorphin II (20 micrograms/mouse) twice a day for 4 days. Vehicle injected mice served as controls. Previously we have shown that the above treatment results in the development of tolerance to their analgesic activity. The binding of [3H]MK-801 was determined in brain regions (cortex, midbrain, pons and medulla, hippocampus, striatum, hypothalamus and amygdala). At 5 nM-concentration, the binding of [3H]MK-801 was increased in cerebral cortex, hippocampus, and pons and medulla of [D-Pen2, D-Pen5]enkephalin treated mice. In [D-Ala2, Glu4]deltorphin II treated mice, the binding of [3H]MK-801 was increased in cerebral cortex and hippocampus. The changes in the binding were due to increases in the Bmax value of [3H]MK-801. It is concluded that tolerance to delta 1- and delta 2-opioid receptor agonists is associated with up-regulation of brain N-methyl-D-aspartate receptors, however, some brain areas affected differ with the two treatments. The results are consistent with the recent observation from this laboratory that N-methyl-D-aspartate receptors antagonists block tolerance to the analgesic action of delta 1- and delta 2-opioid receptor agonists.  相似文献   

11.
1. The density and affinity of binding sites for the delta-selective opioid ligands [3H]-[D-Ala2, Asp4]deltorphin (DELT-I), [3H]-[D-Ala2Glu4]-deltorphin (DELT-II), [3H]-[D-Pen2,D-Pen5]enkephalin (DPDPE), and [3H]-naltrindole (NTI) were determined in whole brain from 10, 15, 25 and 60 day-old C57BL mice. 2. At all ages, the analyses of the homologous displacement curves, gave best fits to single rather than to multiple site models. The binding capacity (Bmax) labelled by [3H]-NTI was about one half that labelled by [3H]-DELT-I, [3H]-DELT-II and [3H]-DPDPE. In 25 and 60 day-old mouse brain the DPDPE Bmax was 25% less than the deltorphin-II Bmax. 3. In saturation experiments, specific binding of [3H]-DELT-I on adult mouse brain homogenates was best fitted by a two-site model (34%, high affinity site, Kd = 1.08 nM and 66% low affinity sites, Kd = 39.9 nM). 4. DPDPE produced a biphasic inhibition of specific [3H]-DELTI-I binding, from 15 days of age onwards. The relative percentage of high and low affinity sites was 72% and 28% in 15 day-, 65% and 35% in 25 day- and 30% and 70% in 60 day-old mice. 5. In adult mouse brain labelled with [3H]-DELT-I, DELT-II recognized 71% of high-affinity and 29% of low-affinity sites DELT-I and DPDPE produced monophasic inhibition of specific [3H]-DELT-II binding to brain homogenates of adult mice. 6. These data suggest that a sub-population of delta-sites (probably the delta 2-subtype), recognized by DELT-I, with high affinity for DELT-II and low affinity for DPDPE develops from 25 days onward. 7. In electrically stimulated mouse vas deferens (MVD) the rank order of potency of the three delta-agonists was: DELT-I > DELT-II > DPDPE in 10 day-old mice: and DELT-I- DELT-II > DPDPE, from 25 days onward. During this time, the potency of DELT-II increased about 15 fold whereas the potency of DELT-I and DPDPE increased only 5 times. The higher efficacy of DELT-II could depend on receptor maturation towards the delta 2-subtype.  相似文献   

12.
Scatchard analysis of saturation binding data indicated that dissociation constant (KD) of [3H]phorbol 12,13-dibutyrate (PDB) binding to the membrane-bound protein kinase C of rat cortex and midbrain was significantly decreased following systemic repeated administration of morphine (mu-opioid receptor agonist) and butorphanol (mu/delta/kappa-mixed opioid receptor agonist). No change in the receptor density (Bmax) of [3H]PDB binding was found following repeated treatment with morphine and butorphanol. On the other hand, neither the Bmax nor KD values in pons/medulla were altered in these rats. These results suggest that systemic repeated opioid treatment, such as morphine and butorphanol leads to an increased affinity for phorbol ester binding to the membrane-bound protein kinase C in rat cortex and midbrain.  相似文献   

13.
Analogs of Met-enkephalin and [D-Pen2, D-Pen5]enkephalin (DPDPE) containing the partially fluorinated amino acid 4,4-difluoro-2-aminobutyric acid (DFAB) in the 2- or 3-position of the peptide sequence were synthesized and their opioid activities and receptor selectivities were determined in vitro. The linear fluorinated [D-DFAB2, Met5-NH2]enkephalin showed mu and delta agonist potencies comparable to those of natural [Leu5]enkephalin. The partially fluorinated DPDPE analogs behaved differently as compared with their non-fluorinated correlates. While L-amino acid substitution in position 3 of DPDPE usually resulted in higher delta agonist potency than D-amino acid substitution. [D-DFAB3]DPDPE turned out to be a more potent delta agonist than [L-DFAB3]DPDPE. Furthermore, [D-DFAB3]DPDPE showed over 100-fold higher delta agonist potency than [D-Abu3]DPDPE (Abu = 2-aminobutyric acid), indicating that the fluorine substituents interact favorably with a delta opioid receptor subsite.  相似文献   

14.
Various doses of MK-801 ((+/-)-5-methyl-10,11-dihydro-5H-dibenzo(a,d) cyclohepten-5, 10-imine maleate), a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist (0.001-1 microgram) injected intracerebroventricularly (i.c.v.) alone did not show any antinociceptive effect. MK-801 (0.001-1 microgram i.c.v.) dose dependently attenuated the inhibition of the tail-flick and hot plate responses induced by i.c.v. administered morphine (1 microgram), [D-Pen2, D-Pen5]enkephalin (DPDPE; 10 micrograms), and U50,488H (trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeoce tamide ) 60 micrograms). However, the inhibition of the tail-flick and hot plate responses induced by i.c.v. administered beta-endorphin (1 microgram) was not changed by i.c.v. administered MK-801. Our results indicate that, at the supraspinal level, NMDA receptors are involved in the production of antinociception induced by supraspinally administered morphine, DPDPE, and U50,488H but not beta-endorphin.  相似文献   

15.
The pineal organ of vertebrates produces melatonin and adenosine. In lower vertebrates, adenosine modulates melatonin production. We report herein that 2-chloro-cyclopentyl-[3H]-adenosine ([3H]CCPA: adenosine A1 receptor agonist) and [3H]-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX: adenosine A1 receptor antagonist), bind specifically to sheep pineal membranes. Binding of [3H]CCPA reached equilibrium at 90 min and dissociation revealed the presence of two components. Saturation analysis suggested the presence of a single population of binding sites (Kd = 1.67 +/- 0.06 nM, Bmax = 2386 fmol/mg protein). Binding was sensitive to GTP and GTPgammaS. Binding of [3H]DPCPX reached equilibrium at 60 min and dissociation was monophasic. Saturation analysis revealed a single population of binding sites (Kd = 5.8 +/- 1.12 nM, Bmax = 1116 fmol/mg protein). The specificity of the [3H]-analogues used and the rank order potency of the competitors tested in the competition experiments suggested the presence of A1 receptors. Future investigations are necessary to elucidate the significance of the differences observed between the binding properties of the adenosine A1 receptor agonist and adenosine A1 receptor antagonist.  相似文献   

16.
17.
The effect of delta opioid agonists - [D-Ala2, D-Leu5]-enkephalin (DADLE), [D-Pen2, D-Pen5]-enkephalin (DPDPE) and deltorphin II - on acidified ethanol induced gastric mucosal lesions was studied in the rat compared with that of morphine. It was found that DADLE, DPDPE, deltorphin II and morphine exerted a dose-dependent inhibition on the mucosal lesions injected subcutaneously, their ID50 values were 0.037, 1.8, 3.5 and 0.35 micromoles/kg, respectively. Naltrindole (10 mg/kg sc.), the selective delta opioid receptor antagonist, inhibited the gastroprotective effect of DADLE, DPDPE and deltorphin II, but it failed to antagonise the effect of morphine. Our results suggest that 1. delta receptors are involved in opioid-mediated gastroprotection, 2. ethanol-induced gastric mucosal damage in the rat may be a quick, simple in vivo model for screening opioid delta receptor agonists and antagonists in the periphery.  相似文献   

18.
The newly synthesized 14-alkoxymetopon derivatives, 14-methoxymetopon, 14-ethoxymetopon, 14-methoxy-5-methyl-morphinone, exhibit high affinity for the naloxone binding sites in rat brain. A substantial decrease in affinity was observed, in the presence of NaCl indicating a high degree of agonist activity. All three 14-alkoxymetopon derivatives displayed high affinity for [3H][D-Ala2,(Me)Phe4,Gly-ol5]enkephalin ([3H]DAMGO) binding sites, much less potency toward delta sites and were the least effective at kappa sites. Isolated tissue studies using the guinea pig ileum preparation confirmed their high agonist potency. Following administration the new compounds produced naloxone reversible antinociceptive effects and were 130-300 times more potent than morphine in the acetic acid induced abdominal constriction model in the mouse, and the hot plate and tail flick tests in the rat. The compounds also produced dose-dependent muscle rigidity, and potentiated barbiturate-induced narcosis. The in vivo apparent pA2 values for naloxone against 14-ethoxymetopon and morphine were similar in analgesia, suggesting an interaction with the same (mu) receptor site. The dependence liability of 14-alkoxymetopon derivatives in the withdrawal jumping test was less pronounced than that of morphine in either rats or mice, similar to tolerance to the their analgesic action. It is concluded that the 14-alkoxymetopon derivatives studied are selective and potent agonists at mu opioid receptors, with reduced dependence liability.  相似文献   

19.
20.
The glycine site (MRZ 2/570 and L-701,324), and uncompetitive (MRZ 2/579) NMDA receptor antagonists inhibited morphine-produced behaviors related to drug-abuse. The expression of morphine dependence was blocked by pretreatment with all three compounds (3-7.5 mg/kg); the effects of glycine/NMDA antagonists were not dose-dependent. Mice which were morphine-free for 3 days still displayed a significant severity of the withdrawal syndrome when challenged again with naloxone. This extinction of a residual morphine dependence was markedly diminished by treatment with similar doses of NMDA receptor antagonists at the test following the wash-out period. The rewarding impact of morphine was investigated in rats using the place preference (CPP) paradigm. All NMDA receptor antagonists (2.5-10 mg/kg) inhibited both the acquisition and expression of morphine-induced CPP. Once established, morphine-induced CPP was observed until 2 weeks after conditioning. NMDA receptor antagonists given for 3 days after the end of conditioning did not influence the extinction of morphine-induced CPP. Microdialysis studies revealed that the behaviorally effective doses of MRZ 2/579 resulted in a brain concentration close to its in vitro potency as an NMDA receptor antagonist. These data suggest that novel glycine site and uncompetitive NMDA receptor antagonists may have therapeutic potential in the treatment of opioid abuse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号