首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results presented in this letter demonstrate that the effective channel mobility of lateral, inversion-mode 4H-SiC MOSFETs is increased significantly after passivation of SiC/SiO2 interface states near the conduction band edge by high temperature anneals in nitric oxide. Hi-lo capacitance-voltage (C-V) and ac conductance measurements indicate that, at 0.1 eV below the conduction band edge, the interface trap density decreases from approximately 2×1013 to 2×1012 eV-1 cm-2 following anneals in nitric oxide at 1175°C for 2 h. The effective channel mobility for MOSFETs fabricated with either wet or dry oxides increases by an order of magnitude to approximately 30-35 cm2/V-s following the passivation anneals  相似文献   

2.
A corner tunneling current component in the reverse-biased emitter-base junction of advanced CMOS compatible polysilicon self-aligned bipolar transistors has been identified by measuring base current as a function of temperature, bias voltage, and emitter shape. This current is found to be an excess tunneling current caused by an increase in defect density in the corners of the emitter and gives rise to three-dimensional effects in small-geometry devices. The devices used for this study were selected from batches aimed at optimizing the emitter-base system. For this reason, the starting material was n-type (~1016 cm-3) and provided the collector regions of the transistors. The intrinsic base and lightly doped extrinsic base regions were both implanted at 30 keV to a dose of 1×1013 cm-2. The activation anneal was performed at 1060°C for 20 s in a rapid thermal annealer. Under such conditions, the emitter-base junction is located about 600 Å below the polysilicon-substrate interface  相似文献   

3.
The electrical properties of MOS capacitors with an indium tin oxide (ITO) gate are studied in terms of the number density of the fixed oxide charge and of the interface traps Nf and N it, respectively. Both depend on the deposition conditions of ITO and the subsequent annealing procedures. The fixed oxide charge and the interface-trap density are minimized by depositing at a substrate temperature of 240°C at low power conditions and in an oxygen-rich ambient. Under these conditions, as-deposited ITO films are electrically conductive. The most effective annealing procedure consists of a two-step anneal: a 45-s rapid thermal anneal at 950°C in N2, followed by a 30 min anneal in N2/20% H2 at 450°C. Typical values obtained for Nit and Nf are 4.2×1010 cm-2 and 2.8×1010 cm-2, respectively. These values are further reduced to 1.9×1010 cm-2 and ≲5×109 cm-2, respectively, by depositing approximately 25 nm polycrystalline silicon on the gate insulation prior to the deposition of ITO  相似文献   

4.
The characteristics of CMOS devices fabricated in oxygen-implanted silicon-on-insulator (SOI) substrates with different oxygen doses are studied. The results show that transistor junction leakage currents are improved by orders of magnitude when the oxygen dose is decreased from 2.25×1018 cm-2 to 1.4×1018 cm-2 . The floating-body effect, i.e. transistor turn-on at lower gate voltage with dramatic improvement in subthreshold slope when the drain voltage is increased, is enhanced by the reduction in leakage current and hence the oxygen dose. In SOI substrates implanted with 1.4×1017 cm-2 oxygen dose and annealed at 1150°C, back-channel mobilities are decreased by several orders of magnitude compared to the mobilities in the precipitate-free silicon film. These device characteristics are correlated with the microstructure at the silicon-buried-oxide interface, which is controlled by oxygen implantation and post-oxygen-implantation anneal  相似文献   

5.
p+-n junction diodes for sub-0.25-μm CMOS circuits were fabricated using focused ion beam (FIB) Ga implantation into n-Si (100) substrates with background doping of Nb=(5-10)×10 15 and Nb+=(1-10)×1017 cm-3. Implant energy was varied from 2 to 50 keV at doses ranging from 1×1013 to 1×1015 cm-2 with different scan speeds. Rapid thermal annealing (RTA) was performed at either 600 °C or 700°C for 30 s. Diodes fabricated on Nb+ with 10-keV Ga+ exhibited a leakage current (IR) 100× smaller than those fabricated with 50-keV Ga+. Tunneling was determined to be the major current transport mechanism for the diodes fabricated on Nb+ substrates. An optimal condition for IR on Nb+ substrates was obtained at 15 keV/1×1015 cm-2. Diodes annealed at 600°C were found to have an IR 1000× smaller than those annealed at 700°C. I-V characteristics of diodes fabricated on Nb substrates with low-energy Ga+ showed no implant energy dependence. I-V characteristics were also measured as a function of temperature from 25 to 200°C. For diodes implanted with 15-keV Ga +, the cross-over temperatures between Idiff and Ig-r occurred at 106°C for Nb + and at 91°C for Nb substrates  相似文献   

6.
A systematic study of post-metallization annealing (PMA) effect on the quality of thermal SiO2 on p-type 6H- and 4H-SiC has been carried out. A simultaneous quasi-static hi-lo frequency capacitance-voltage method has been employed to measure the total effective oxide charge (Neff) and interface state density (D it). To ensure accurate results, Dit was measured at 350°C which, depending on the hole capture cross sections, should enable the measurement of interface states located in the band gap as deep as 1.3-1.5 eV from the valence band edge. The dependence of Neff and Dit on annealing temperature and ambient as well as the effect of thermal and sputtered gate metal on the oxide quality are reported. It is shown that Neff values close to the detection limit due to the uncertainty in SiC electron affinities and Dit values below 1×1011 cm-2/eV deep in the band gap can be reproducibly obtained for both p-type 6H- and 4H-SiC  相似文献   

7.
The reduction of trap-state densities by plasma hydrogenation in n-channel polysilicon thin-film transistors (poly-TFTs) fabricated using a maximum temperature of 600°C has been studied. Hydrogenated devices have a mobility of ~40 cm2/V×5, a threshold voltage of ~2 V, an inverse subthreshold of ~ 0.55 V/decade, and a maximum on/off current ratio of 5×108. The effective channel length decreases by ~0.85 μm after a short hydrogenation which may be attributed to the activation of donors at trap states near the source/drain junctions. Trap-state densities decrease from 1.6×1012 to 3.5×1011 cm-2 after hydrogenation, concomitant with the reduction of threshold voltage. Using the gate lengths at which the trap-state densities deviate from the long-channel values as markets for the leading edge of passivation, the apparent hydrogen diffusivity is found to be 1.2×10-11 cm2/s at 350°C in the TFT structure  相似文献   

8.
A technique is developed to measure silicon-on-insulator (SOI) silicon device film thickness using a MOSFET. The method is based on CV measurements between gate and source/drain at two different back-gate voltages. The SOI devices used in this study were n+ polysilicon gate n-channel MOSFETs fabricated with modified submicrometer CMOS technology on SIMOX (separation by implanted oxygen) wafers. The SIMOX wafers were implanted with a high dose of oxygen ions (1018 cm-2) at 200 keV and subsequently annealed at 1230°C. The NMOS threshold boron implant dose is 2×1012 cm-2. This method is simple, nondestructive, and no special test structure is needed. Using this technique, SOI film thickness mapping was made on a finished wafer and a thickness variation of ±150 Å was found  相似文献   

9.
The characteristics of CMOS transistors fabrication on silicon implanted with oxygen (SIMOX) materials were measured as a function of the silicon superficial layer contamination levels. In addition, postimplant anneal temperatures of 1300°C, 1350°C, and 1380°C were examined. It is found that the transistor leakage currents as well as the integrity of the gate oxide and implanted SIMOX oxide are functions of the carbon content in the starting material. Leakage currents below 1.0×10-12 A/μm of channel width have been measured when the carbon concentration is reduced to 2×1018/cm2. In addition, the integrity of the transistor gate dielectric, SIMOX implanted oxide, and oxygen precipitate density are seen to be a function of the postimplant anneal temperature. A gate dielectric breakdown field of 10 MV/cm has been achieved when the postimplant temperature is increased to 1380°C  相似文献   

10.
Shallow p+-n and n+-p junctions were formed in germanium preamorphized Si substrates. Germanium implantation was carried out over the energy range of 50-125 keV and at doses from 3×1014 to 1×1015 cm-2. p +-n junctions were formed by 10-keV boron implantation at a dose of 1×1015 cm-2. Arsenic was implanted at 50 keV at a dose of 5×1015 cm-2 to form the n+-p junctions. Rapid thermal annealing was used for dopant activation and damage removal. Ge, B, and As distribution profiles were measured by secondary ion mass spectroscopy. Rutherford backscattering spectrometry was used to study the dependence of the amorphous layer formation on the energy and dose of germanium ion implantation. Cross-sectional transmission electron microscopy was used to study the residual defects formed due to preamorphization. Complete elimination of the residual end-of-range damage was achieved in samples preamorphized by 50-keV/1×1015 cm-2 germanium implantation. Areal and peripheral leakage current densities of the junctions were studied as a function of germanium implantation parameters. The results show that high-quality p+-n and n+-p junctions can be formed in germanium preamorphized substrates if the preamorphization conditions are optimized  相似文献   

11.
Rapid isothermal annealing (RIA) was performed on 0.5-16-MeV Si +, 1-MeV Be+, and 150-keV Ge+ implanted InP:Fe and 380-keV Fe+ implanted InGaAs. Annealings were performed in the temperature range 800-925°C using an InP proximity wafer in addition to the Si3N4 dielectric cap. Dopant activations close to 100% were obtained for 3×1014 cm-2 Si+ and 2×1014 cm-2 Be+ implants in InP:Fe. For the elevated temperature (200°C) 1×1014 cm-2 Ge+ implant, a maximum of 50% activation was obtained. No redistribution of dopant was observed for Si and Ge implants due to annealing. However, redistribution of dopant was seen for Be and Fe implants due to annealing. Phosphorous coimplantation has helped to eliminate the Be in-diffusion problem in InP, but did not help to reduce Fe in-diffusion and redistribution in InGaAs. Using an RIA cycle with low temperature and short duration is the only solution to minimize Fe redistribution in InGaAs  相似文献   

12.
The impact of Co incorporation on the electrical characteristics has been investigated in n+/p junction formed by dopant implantation into CoSi2 and drive-in anneal. The junctions were formed by As+ (30 or 40 keV, 1×1016 cm -2) implantation into 35 nm-thick CoSi2 followed by drive-in annealing at 900°C for 30 s in an N2 ambient. Deeper junction implanted by As+ at 40 keV was not influenced by the Co incorporation. However, for shallower junction implanted by As + at 30 keV, incorporation of Co atoms increased its leakage current, which were supposed to be dissociated from the CoSi2 layer by silicide agglomeration during annealing. The mechanism of such a high leakage current was found to be Poole-Frenkel barrier lowering induced by high density of Co traps  相似文献   

13.
Hydrogenation of polysilicon (poly-Si) thin film transistors (TFT's) by ion implantation has been systematically studied. Poly-Si TFT performance was dramatically improved by hydrogen ion implantation followed by a forming gas anneal (FGA). The threshold voltage, channel mobility, subthreshold swing, leakage current, and ON/OFF current ratio have been studied as functions of ion implantation dose and FGA temperature. Under the optimized conditions (H+ dose of 5×1015 cm-2 and FGA temperature at 375°C), NMOS poly-Si TFT's fabricated by a low temperature 600°C process have a mobility of ~27 cm 2/V·s, a threshold voltage of ~2 V, a subthreshold swing of ~0.9 V/decade, and an OFF-state leakage current of ~7 pA/μm at VDS=10 V. The avalanche induced kink effect was found to be reduced after hydrogenation  相似文献   

14.
This work investigates the shallow CoSi2 contacted junctions formed by BF2+ and As+ implantation, respectively, into/through cobalt silicide followed by low temperature furnace annealing. For p+n junctions fabricated by 20 keV BF2+ implantation to a dose of 5×1015 cm-2, diodes with a leakage current density less than 2 nA/cm2 at 5 V reverse bias can be achieved by a 700°C/60 min annealing. This diode has a junction depth less than 0.08 μm measured from the original silicon surface. For n+p junctions fabricated by 40 keV As+ implantation to a dose of 5×1015 cm-2, diodes with a leakage current density less than 5 nA/cm2 at 5 V reverse bias can be achieved by a 700°C/90 min annealing; the junction depth is about 0.1 μm measured from the original silicon surface. Since the As+ implanted silicide film exhibited degraded characteristics, an additional fluorine implantation was conducted to improve the stability of the thin silicide film. The fluorine implantation can improve the silicide/silicon interface morphology, but it also introduces extra defects. Thus, one should determine a tradeoff between junction characteristics, silicide film resistivity, and annealing temperature  相似文献   

15.
Bulk traps in very thin ( ~100-nm) SIMOX films have been studied by applying current deep-level transient spectroscopy (DLTS) to fully depleted, enhancement MOS transistors, fabricated in these films. The effect of states at both the front and back SiO2-Si interfaces is eliminated by suitable biasing. Using this technique, a bulk trap with energy level 0.44 eV above the valence-band edge, capture cross section ~10-17 cm2, and concentration ~10 15 cm-3, which is believed to be due to iron contamination, has been identified  相似文献   

16.
Between the growth temperatures of 490-520°C Si-doped GaAs0.5Sb0.5 changes from 1×1017 cm-3 n-type to 2×1017 cm-3 p-type. The scattering mechanisms of the n and p-type epilayers are investigated. The reproducibility and potential applications of the observed conduction type change are demonstrated by the fabrication of a pn diode  相似文献   

17.
Low-resistance ohmic contacts have been fabricated on a natural IIb semiconducting diamond crystal and on undoped polycrystalline diamond films by B ion implantation and subsequent metallization with a Ti-Au bilayer metallization. A high B concentration of ~7×1020 cm-3 at the surface was obtained by ion implantation, a post-implant anneal, and a subsequent chemical removal of the graphite layer that resulted from the radiation damage. A bilayer metallization of Ti followed by Au annealed at 850°C yielded a specific contact resistance value on the order of 10-6 Ω-cm2 for chemical-vapor-deposition-grown polycrystalline films and on the order of 10-5 Ω-cm2 for the semiconducting natural crystal  相似文献   

18.
Junction depth, sheet resistance, dopant activation, and diode leakage current characteristics were measured to find out the optimal processing conditions for the formation of 0.2-μm p+-n junctions. Among the 2×1015 cm-2 BF2 implanted crystalline, As or Ge preamorphized silicon, the crystalline and Ge preamorphized samples exhibit excellent characteristics. The thermal cycle of furnace anneal (FA) followed by rapid thermal anneal (RTA) shows better characteristics than furnace anneal, rapid thermal anneal, or rapid thermal anneal prior to furnace anneal  相似文献   

19.
The DC current gain dependence of InGaP/GaAs heterojunction bipolar transistors (HBTs) on subcollector and etch-stop doping is examined. Samples of InGaP/GaAs HBTs having various combinations of subcollector doping and etch-stop doping are grown, and large area 60 μm×60 (μ) HBTs are then fabricated for DC characterization. It is found that the DC current gain has a strong dependence on the doping concentration in the subcollector and the subcollector etch-stop. Maximum gain is achieved when the subcollector is doped at 6~7×10 18 cm-3 while the subcollector etch-stop is doped either above 6×1018 cm-3 (current gain/sheet resistance ratio, β/Rb=0.435 at Ic=1 mA) or below 3.5×1017 cm-3 (β/Rb=0.426~0.438 at Ic=1 mA). The data show that it is not necessary to heavily dope the subcollector etch-stop to reduce the conduction barrier and to obtain high current gain. The high current gain obtained with the low InGaP etch-stop doping concentration is attributed to the reduction of the effective energy barrier thickness due to band bending at the heterojunction between the InGaP etch-stop and the GaAs subcollector. These results show that the β/Rb of InGaP/GaAs HBTs can improve as much as 69% with the optimized doping concentration in subcollector and subcollector etch-stop  相似文献   

20.
Hole traps in natural type IIb diamond have been characterized with Schottky diodes using thermal and optical techniques. The Schottky diode capacitance variation with time was used to determine the detrapping rate of holes. For reverse-biased Schottky diodes the rate was found to be independent of both electric field from 0 to 3.6×105 V cm-1, and temperature from -25 to 102°C. Optical radiation below 1.4 eV (>890 nm) has no measurable effect on the detrapping rate, while the rate increases with decreasing wavelength below 870 nm, We speculate that the traps are caused by impurities, possibly nitrogen aggregates, distributed over an energy range 1.4-4 eV above the valence band  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号