首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow patterns in dissimilar friction stir welds of AA5083-O and AA6082-T6 alloys have been studied. It was observed that material flows (pushes but does not mix) more from the advancing side into the retreating side. Material flow from the retreating side to the advancing side only occurs in the tool shoulder domain, and the pull is greatest at the transition region between the tool shoulder domain and the tool pin domain. It was also observed that materials tend to extrude out only in the thermomechanically affected zone of the retreating side, which was influenced by rotation of both the tool shoulder and the tool pin. The finest grains were present in the regions closest to the tool edge in the retreating side. The volume fraction of recrystallized grains increases down into the deeper part of the nugget from the flow arm region. Microhardness measurements revealed that regions of lowest hardness values were the nugget and the heat affected zone of the AA6082-T6 alloy side. The welding speeds had no influence on the microhardness values per se, but affected the mixing proportions in the flow arm and in the nugget stem.  相似文献   

2.
Friction Stir Weldabilities of AA1050-H24 and AA6061-T6 Aluminum Alloys   总被引:1,自引:0,他引:1  
The friction stir weldabilities of the strain-hardened AA1050-H24 and precipitate-hardened AA6061-T6 aluminum alloys were examined to reveal the effects of material properties on the friction stir welding behavior. The experimental results are obtlained. (1) For AA1050-H24, the weld can possess smoother surface ripples; there is no elliptical weld nugget in the weld; there is no discernible interface between the stir zone and the thermomechanically affected zone; and the internal defect of the weld looks like a long crack and is located in the lower part of the weld. (2) For AA6061-T6, the weld usually possesses slightly rougher surface ripples; an elliptical weld nugget clearly exists in the weld; there are discernible interfaces among the weld nugget, thermomechanically affected zone and heat affected zone; and the internal defect of the weld is similar to that of the AA1050-H24 weld. (3) The effective range of welding parameters for AA1050-H24 is narrow, while the one for AA6061-T6 is very wide. (4) T  相似文献   

3.
Dissimilar friction stir welding (FSW) of heat (AA 6082-T6) and non-heat (AA 5754-H22) treatable aluminium alloys, in lap joint configuration, was performed in this work. The base material plates were 1 mm thick. Welds were performed combining different plates positioning, relative to the tool shoulder, in order to assess the influence of base materials properties on welds strength. Three different tools were tested, one cylindrical and two conical, with different taper angles. Welds strength was characterized by performing transverse and tensile–shear tests. Strain data acquisition by Digital Image Correlation (DIC) was used to determine local weld properties. The results obtained enabled to conclude that the dissimilar welds strength is strongly dependent on the presence of the well-known hooking defect and that the hooking characteristics are strongly conditioned by base materials properties/positioning. By placing the AA 6082-T6 alloy, as top plate, in contact with the tool shoulder, superior weld properties are achieved independently of the tool geometry. It is also concluded that the use of unthreaded conical pin tools, with a low shoulder/pin diameter relation, is the most suitable solution for the production of welds with similar strengths for advancing and retreating sides.  相似文献   

4.
Lightweight alloys are of major concern, due to their functionality and applications in transport and industry applications. Friction stir welding (FSW) is a solid-state welding process for joining aluminum and other metallic alloys and has been employed in aerospace, rail, automotive and marine industries. Compared to the conventional welding techniques, FSW produces joints which do not exhibit defects caused by melting. The objective of the present study is to investigate the surface hardness (H) and elastic modulus (E) in friction stir welded aluminum alloy AA6082-T6. The findings of the present study reveal that the welding process softens the material, since the weld nugget is the region where the most deformations are recorded (dynamic recrystallization, production of an extremely fine, equiaxial structure), confirmed by optical microscopy and reduced nanomechanical properties in the welding zone. A yield-type pop-in occurs upon low loading and represents the start of phase transformation, which is monitored through a gradual slope change of the load-displacement curve. Significant pile-up is recorded during nanoindentation of the alloy through SPM imaging.  相似文献   

5.
This paper presents the results of an experimental and numerical campaign on Linear Friction Welding of dissimilar AA2011-T8 and AA6082-T6 aluminum alloys. Experimental tests were carried out with constant oscillation amplitude and process time. Varying oscillation frequency, interface pressure, specimen geometry and mutual position were used. Grain size measurements, HV tests and EDX analysis were considered to characterize the microstructure of the joints as a function of the input process parameters. A thermal numerical model was utilized to predict the temperature profiles in the joints during the process. The obtained results allowed the identification of four weld categories: sound joints, “bonding limit” condition and two different unwelded joints. The investigation of the causes of the different joint behavior permitted to obtain a few design guidelines on the LFW of dissimilar alloys with different geometry.  相似文献   

6.
In this study the microstructural and mechanical behaviour of resistance spot welds (RSW) done on aluminium alloy 6082-T6 sheets, welded at different welding parameters, is examined. Microstructural examinations and hardness evaluations were carried out in order to determine the influence of welding parameters on the quality of the welds. The welded joints were subjected to static tensile-shear tests in order to determine their strength and failure mode. The increase in weld current and duration increased the nugget size and the weld strength. Beyond a critical nugget diameter the failure mode changed from interfacial to pullout. Taking into consideration the sheet thickness and the mechanical properties of the weld, a simple model is proposed to predict the critical nugget diameter required to produce pull-out failure mode in undermatched welds in heat-treatable aluminium alloys.  相似文献   

7.
In this work, thermo-mechanical behavior and microstructural evolution in similar and dissimilar friction stir welding of AA6061-T6 and AA5086-O have been investigated. Firstly, the thermo-mechanical behaviors of materials during similar and dissimilar FSW operations have been predicted using three-dimensional finite element software, ABAQUS, then, the mechanical properties and the developed microstructures within the welded samples have been studied with the aid of experimental observations and model predictions. It is found that different strengthening mechanisms in AA5086 and AA6061 result in complex behaviors in hardness of the welded cross section where the hardness variation in similar AA5086-O joints mainly depends on recrystallization and generation of fine grains in weld nugget, however, the hardness variations in the weld zone of AA6061/AA6061 and AA6061/AA5086 joints are affected by subsequent aging phenomenon. Also, both experimental and predicted data illustrate that the peak temperature in FSW of AA6061/AA6061 is the highest compared to the other joints employing the same welding parameters.  相似文献   

8.
Friction stir welded AA5052-O and AA6061-T6 dissimilar joint has a more obvious impact on microstructure and texture evolution compared to single material welding due to differences in physical and chemical parameters between two aluminum alloys. Microstructure, texture evolution and grain structure of AA5052-O and AA6061-T6 dissimilar joint were investigated by means of OM,EBSD and TEM measurements. Experimental results showed that FS weld was generalized in four regions–nugget zone (NZ),thermomechanically affected zone (TMAZ),heat affected zone (HAZ) and base metals (BM), using standard nomenclatures. NZ exhibited the complex structure of the two materials with flowing shape and mainly composed of the advancing side material Subgrain boundaries in weld nugget zone gradually transformed into high angle grain boundaries by absorbing dislocation and accumulating misorientations. Grain refinement of weld nugget zone was achieved by dynamic recrystallization. In the friction stir welding process, the presence of the shear deformation in weld made {001} < 100 > C cube texture, {123} < 634 > S texture in BM gradually transformed into {111} < 1(−)12(−) > A11 shear texture. HABs distribution were most significant in nugget followed by RS and then by AS. In TMAZ and NZ, numerous precipitates and lots of dislocations were observed.  相似文献   

9.
Microstructural observations of extrusion welds in an A-pillar made of AA6082-T4 revealed that the observed extrusion weld is a composite of a seam weld (longitudinal weld) and a charge weld (transverse weld). To determine the mechanical properties of this weld region, tensile specimens were prepared with the weld located at 0°, 45°, and 90° to the tensile axis. For comparison purposes, specimens from no-weld regions were also prepared in the same orientations and tested. The specimens with 45°-weld exhibited the lowest tensile strength, followed by the specimens with 90°-weld, no-weld and 0°-weld specimens. Comparison of failure strains and fracture modes revealed that weld regions are less ductile than the no-weld regions. Microscopic observations of fractured surfaces and further analysis revealed that Mg2Si precipitates that align along the charge weld cause premature failure at these locations.  相似文献   

10.
The influence of the plastic behaviour of two aluminium alloys, very popular in welding construction, on friction stir weldability, is analysed in this work. The two base materials, a non-heat-treatable (AA5083-H111) and a heat-treatable aluminium (AA6082-T6) alloy, are characterised by markedly different strengthening mechanisms and microstructural evolution at increasing temperatures. Their plastic behaviour, under different testing conditions, was analysed and compared. The two base materials were also welded under varied friction stir welding (FSW) conditions in order to characterise their weldability. The relation between weldability, material flow during FSW and the plastic behaviour of the base materials, at different temperatures, was analysed. It was found that the AA6082 alloy, which displays intense flow softening during tensile loading at high temperatures, and is sensitive to dynamic precipitation and overageing under intense non-uniform deformation, displays good weldability in FSW. Under the same welding conditions, the AA5083 alloy, which in quasi-static conditions displays steady flow behaviour at increasing temperatures, and is sensitive to moderate hardening at high strain rates, displays poor weldability.  相似文献   

11.
Solid-state welding processes like friction welding and friction stir welding are now being actively considered for welding aluminum alloy AA7075. In this work, friction welding of AA7075-T6 rods of 13 mm diameter was investigated with an aim to understand the effects of process parameters on weld microstructure and tensile properties. Welds made with various process parameter combinations (incorporating Taguchi methods) were subjected to tensile tests. Microstructural studies and hardness tests were also conducted. The results show that sound joints in AA7075-T6 can be achieved using friction welding, with a joint efficiency of 89% in as-welded condition with careful selection of process parameters. The effects of process parameters are discussed in detail based on microstructural observations.  相似文献   

12.
The refinement in weld metal grain size and shape results in both improved mechanical properties (ductility and toughness) as well as a significant improvement in weldability. In the present study, the influence of scandium (Sc) additions to the fillers on the structure and mechanical properties of AA6082 gas tungsten arc (GTA) weldments were investigated. Controlled amounts of scandium as grain refiner were introduced into the molten pool of AA6082 by pre-deposited cast inserts (AA4043 and AA5356) by GTA welding. Full penetration GTA welds were prepared using alternating current (AC). It was observed that grain size decreased with increasing amounts of scandium. The grain refinement is mainly caused by the Al3Sc particles, which act as heterogeneous nucleation of α-Al grains. It has been shown that welds prepared with AA5356 cast insert exhibited high strength and ductility when compared with other welds. The observed grain refinement was shown to result in an appreciable increase in fusion zone hardness, strength and ductility. Post-weld aging treatment resulted in improved tensile strength and hardness of the weldments and this aging response could be attributed to the weld dilution from the base metal. The slow diffusion of Sc in Al matrix and stability of Al3Sc precipitates at elevated temperatures were suggested to be responsible for the improved high temperature yield strength of welds made from Sc modified fillers.  相似文献   

13.
The present investigation is concerned with high‐cycle axial fatigue testing of a 2‐mm AA6060‐T6 hybrid metal extrusion & bonding (HYB) butt weld produced in the solid state using AA6082 filler metal addition. The results complement the three‐point bend testing and the tensile testing done in two previous studies. In this study, optical microscope and scanning electron microscope examinations have been carried out to reveal the joint macro/microstructure and document possible surface and root defects deemed to affect fatigue life. In the as‐welded condition, the HYB weld suffers from surface irregularities at the weld face and ‘kissing’ bond formation in the root region. Despite of this, the subsequent testing shows that the fatigue properties exceed those reported for comparable AA6082‐T6 gas metal arc butt welds and matching those reported for corresponding high‐strength laser beam and friction stir weldments.  相似文献   

14.
The scope of this investigation is to evaluate the effect of joining parameters on the mechanical properties, microstructural features and material flow of dissimilar aluminium alloys (3 mm-thick AA2024-T3 and AA7075-T6 sheets) joints produced by friction stir welding. Mechanical performance has been investigated in terms of hardness and tensile testing. Material flow using the stop action technique has also been investigated in order to understand the main features of the mixing process. No onion ring formation has been observed; the boundary between both base materials at the stir zone is clearly delineated, i.e., no material mixing is observed. A non-stable rotational flow inside the threads has been identified due to the formation of a cavity on the rear of the pin. Microstructural observation has revealed the development of a recrystallised fine-grained stir zone, with two different grain sizes resulting from the two different base materials.  相似文献   

15.
On the Residual Stress Field in the Aluminium Alloy FSW Joints   总被引:1,自引:0,他引:1  
V. Dattoma  M. De Giorgi  R. Nobile 《Strain》2009,45(4):380-386
Abstract:  In this study, we evaluated the residual stress field which arose because of a new welding process named 'friction stir welding'. We analysed aluminium alloy butt-welded joints. Both similar and dissimilar joints were considered in 2024-T3 and 6082-T6 aluminium alloys of 0.8 and 3 mm thick. For each joint, the longitudinal and transversal residual stress distributions were obtained in a direction perpendicular to the weld cord. In the thicker dissimilar joints, the longitudinal residual stress distribution present is very similar to the distribution present in traditional welded joints. It presents, in fact, a tensile region near the weld cord, which is balanced by compressive regions away from weld line. On the contrary, other joints present a low compressive stress at the weld toe and a tensile stress state elsewhere. Moreover, the effect of the shoulder geometry on the residual stress field was evaluated on 1.5-mm-thick joints.  相似文献   

16.
The aircraft aluminium alloys generally present low weldability by traditional fusion welding process. The development of the friction stir welding has provided an alternative improved way of satisfactorily producing aluminium joints, in a faster and reliable manner. In this present work, the influence of process and tool parameters on tensile strength properties of AA7075-T6 joints produced by friction stir welding was analysed. Square butt joints were fabricated by varying process parameters and tool parameters. Strength properties of the joints were evaluated and correlated with the microstructure, microhardness of weld nugget. From this investigation it is found that the joint fabricated at a tool rotational speed of 1400 rpm, welding speed of 60 mm/min, axial force of 8 kN, using the tool with 15 mm shoulder diameter, 5 mm pin diameter, 45 HRc tool hardness yielded higher strength properties compared to other joints.  相似文献   

17.
The external non-rotational shoulder assisted friction stir welding (NRSA-FSW) was applied to weld high strength aluminum alloy 2219-T6 successfully, and effects of the tool rotation speed on microstructures and mechanical properties were investigated in detail. Defect-free joints were obtained in a wide range of tool rotation speeds from 600 rpm to 900 rpm, but cavity defects appeared on the advancing side when the tool rotation speed increased to 1000 rpm. The microstructural deformation and heat generation were dominated by the rotating tool pin and sub-size concave shoulder, while the non-rotational shoulder helped to improve the weld formation. Microstructures and Vickers hardness distributions showed that the NRSA-FSW is beneficial to improving the asymmetry and inhomogeneity, especially in the weld nugget zone (WNZ). At the tool rotation speed of 800 rpm, both the tensile strength and the elongation reached the maximum, and the maximum tensile strength was up to 69.0% of the base material. All defect-free joints were fractured at the weakest region with minimum Vickers hardness in the WNZ, while for the joint with cavity defects the fracture occurred at the defect location.  相似文献   

18.
The relatively new welding process friction stir welding (FSW) was applied in this research work to join 6 mm thick dissimilar aluminum alloys AA5083-H111 and AA6351-T6. The effect of tool rotational speed and pin profile on the microstructure and tensile strength of the joints were studied. Dissimilar joints were made using three different tool rotational speeds of 600 rpm, 950 rpm and 1300 rpm and five different tool pin profiles of straight square (SS), straight hexagon (SH), straight octagon (SO), tapered square (TS), and tapered octagon (TO). Three different regions namely unmixed region, mechanically mixed region and mixed flow region were observed in the weld zone. The tool rotational speed and pin profile considerably influenced the microstructure and tensile strength of the joints. The joint which was fabricated using tool rotational speed of 950 rpm and straight square pin profile yielded highest tensile strength of 273 MPa. The two process parameters affected the joint strength due to variations in material flow behavior, loss of cold work in the HAZ of AA5083 side, dissolution and over aging of precipitates of AA6351 side and formation of macroscopic defects in the weld zone.  相似文献   

19.
5083-H111 and 6082-T651 aluminum alloys used particularly in shipbuilding industry especially for the sake of their high corrosion resistance and moderate strength, were welded using Pulsed Robotic Cold Metal Transfer (CMT)-Metal Inert Gas (MIG) technology. Joints were fabricated as both similar and dissimilar alloy welds using plates with a thickness of 6 mm. Non-destructive tests such as visual and radiological examination were conducted before further destructive tests. Tensile, bend and fatigue tests were applied to specimens extracted from welded joints. Fracture surfaces of fatigue samples were examined by light optical microscopy (LOM) and scanning electron microscopy (SEM). Also macro and microstructures of weld zones were investigated and micro hardness profiles were obtained. In accordance with results, CMT-MIG provides good joint efficiency with high welding speed, and good tensile and fatigue performance.  相似文献   

20.
The joining of dissimilar Al–Cu alloy AA2219-T87 and Al–Mg alloy AA5083-H321 plates was carried out using friction stir welding (FSW) technique and the process parameters were optimized using Taguchi L16 orthogonal design of experiments. The rotational speed, transverse speed, tool geometry and ratio between tool shoulder diameter and pin diameter were the parameters taken into consideration. The optimum process parameters were determined with reference to tensile strength of the joint. The predicted optimal value of tensile strength was confirmed by conducting the confirmation run using optimum parameters. This study shows that defect free, high efficiency welded joints can be produced using a wide range of process parameters and recommends parameters for producing best joint tensile properties. Analysis of variance showed that the ratio between tool shoulder diameter and pin diameter is the most dominant factor in deciding the joint soundness while pin geometry and welding speed also played significant roles. Microstructural studies revealed that the material placed on the advancing side dominates the nugget region. Hardness studies revealed that the lowest hardness in the weldment occurred in the heat-affected zone on alloy of 5083 side, where tensile failures were observed to take place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号