首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Variation in the chemical composition of wood cell walls has a significant influence on the properties of wood plastic composites (WPCs). This study investigated the effect of removal of hemicellulose and/or lignin on the mechanical properties and dimensional stability of WPCs. Four types of wood particles with various compositions including native wood flour (WF), hemicellulose-removed particle (HR), holocellulose (HC), and α-cellulose (αC) were prepared and compounded with high density polyethylene (HDPE) in an extruder, both with and without maleated polyethylene. Injection molding was used to make test specimens. The HR-based composites exhibited the best water resistance. The HC-based composites obtained a greater tensile modulus but a lower water resistance. The highest values for tensile strength, elongation at brake, toughness, and impact strength were achieved by the composites filled with αC.  相似文献   

2.
This study examined the feasibility of using polybutene-1 (PB-1), a ductile plastic, as a matrix for manufacturing wood plastic composites (WPCs) with improved toughness and ductility compared to currently commercialized WPCs. The processability, tensile, flexural, and impact properties of injection molded PB-1/wood-flour composite samples with varying proportions of wood flour were characterized. Analysis also included the morphology of fractured samples surface and adhesion between the polymer and wood flour using SEM. Comparisons of the mechanical properties and adhesion in the PB-1 composites to those of HDPE and PP-based WPCs found the composites made with PB-1 matrix significantly inferior in strength and stiffness (both in tensile and flexural) than their counterparts made of HDPE and PP matrices. In contrast, the processability, elongation at break, impact strength and adhesion in PB-1/wood-flour composites, superior to those of HDPE and PP, confirmed their suitability for use as a matrix in composites intended for applications subjected to high impacts.  相似文献   

3.
Degree of surface quality of wood plastic composites (WPCs) is a function of both raw material characteristics and the manufacturing variables. The WPC panels comprised of different panel densities (800, 950, 1000, and 1080 kg/m3), wood flour contents (50, 60, 70, and 80 wt.%), wood flour sizes (<0.5, ?0.5 to <0.8, 0.8–1, and >1 mm), and hot-pressing temperatures (190 and 210 °C) were manufactured using a dry blend/flat-pressing method under laboratory conditions. The surface smoothness of the WPC panels improved with increasing WPC density, plastic content, and hot-pressing temperature while it deteriorated with increasing wood flour size. The reduction in the particle size of the WF resulted in a more compact structure on the WPC surface. In general, the wettability of the samples increased by increasing surface roughness.  相似文献   

4.
Wood plastic composites (WPCs) are comprised of wood flour and thermoplastic polymer. The matrix is typically high-density polyethylene, poly (vinyl chloride), or polypropylene. The effect of morphology and micromechanics of wood flour particles on the mechanical performance of the bulk composite is a relatively unexplored area. The knowledge about the in situ properties of wood particles and the interfacial properties between the wood particles and the polymer matrix in the bio-composites is very limited. The objective of this work is to characterize the full-field deformation and strain distribution in and around wood particles embedded in polymer matrix. The mechanical tests are performed in small-scale tensile loading stage on thin composite samples containing 1-3 wood particles orientated at various angles. The deformations and strains is measured using optical measurement system based on Digital Image Correlation (DIC) principle.  相似文献   

5.
In this study, the effects of white-rot fungus (Coriolus versicolor) on the properties of high density polyethylene (HDPE)/wood flour/paper sludge composites were examined. In addition, the effectiveness of using coupling agent on the durability of decayed and undecayed WPCs was investigated. Two different types of sludge materials, namely paper making waste water sludge (PS) and ink-eliminated sludge (IES) were used. The mechanical properties, morphology, and water absorption of fabricated composites were investigated. At a similar wood flour loading, except for modulus of elasticity, the fungi treated composites showed lower mechanical properties (such as modulus of rupture and unnotched Izod impact strength), and higher water absorption compared to untreated composites. According to the results, addition of wood flour decreased the resistance of the composites to moisture and fungal environment. The exposure of the composites to a 4-cycle (2, 24, 48 and 72 h) water immersion caused serious damage to the interfacial adhesion between wood flour and polymer matrix due to contraction and swelling stresses developed during the cyclic exposure. The detrimental effect of fungal treatment on the water uptake of the composites could be explained by the degradation of lignin which made the cellulose content more accessible. Further, it makes chains of cavities that accelerate water absorption. However, the weight losses of all cases of treated composites were low (less than 2.5%), while PS filled composites were more susceptible to white-rot fungi. The addition of coupling agent during the compounding of wood flour and HDPE prevented the colonization and proliferation of fungus on the surface of the composites, and had an advantageous effect on the water uptake and mechanical properties of both treated and untreated composites.  相似文献   

6.
以超临界CO_2为发泡剂,设计高温保压、低温快速泄压发泡的工艺,制备微孔发泡木粉/聚乳酸复合材料。利用X射线衍射仪、差示扫描量热仪、旋转流变仪对复合体系结晶及流变性能进行分析。采用排水法及扫描电镜研究了木粉含量对发泡材料表观密度、发泡倍率,泡孔密度及泡孔形貌的影响。结果表明,木粉的加入提高了木粉/聚乳酸复合材料熔体的复数黏度和储能模量,降低了聚乳酸的结晶度,提高了泡孔密度,减小了泡孔尺寸。当木粉含量为20%时,木粉/聚乳酸发泡材料表观密度为0.19g/cm~3,发泡倍率达到7倍,泡孔密度为7.23×10~8 cm~(-3),平均泡孔直径为20μm。  相似文献   

7.
In-situ polymerization and solution casting techniques are two effective methods to manufacture wood polymer composites (WPCs). In this study, wood polymer composites (WPCs) were manufactured from meranti sapwood by solution casting and in-situ polymerization process using methyl methacrylate (MMA) and epoxy matrix respectively. Physical, mechanical, and morphological characterizations of fabricated WPCs were then carried out to analyse their properties. Morphological properties of composites samples were analyzed through scanning electron microscopy (SEM). The result reveals that in-situ wood composite exhibited better properties compared to pure wood, 5% WPC and 20% WPC. Moreover, in-situ WPC had lowest water absorption and least biodegraded. Conversely, pure wood shown moderate mechanical strength, high biodegradation and water absorption rate. In term of biodegradation, earth-medium brought more severe effect than water in deteriorating the properties of the specimens.  相似文献   

8.
The main objective of this study was to determine the durability of chemical preservatives treated wood flour/high density polyethylene (HDPE) composites to white-rot fungus (Coriolus versicolor). Specimens, containing treated and untreated poplar wood flour (PF, 60%), were mixed with HDPE (38%) as polymer matrix and maleic anhydride grafted polyethylene (MAPE, 2 wt.%) as coupling agent. Two fungicide materials, namely 3-iodo-2-propynyl butylcarbamate (IPBC, 0.3, 0.6 and 0.9 wt.%) and 2 thiazol-4-yl-1H-benzoimidazole (TBZ, 0.3, 0.6 and 0.9 wt.%) were used in preparation of wood plastic composites (WPCs). Then, treated and untreated composites were exposed to the fungal decay for 12 weeks according to the European Union (EN) 113 standard. Mechanical and physical properties of the composites were evaluated before and after fungal incubation. The experimental results indicated that treated composites were more resistant to decay, with strength losses significantly lower than the untreated (control) sample. Physical properties in terms of water absorption and thickness swelling were improved by the incorporation of fungicide agents, but no significant differences were observed between the treaded samples. Weight losses for the various treated composites ranged from 1.1% to 4.5%. In addition, IPBC treated samples showed slightly lower weight loss compared with the treated composites with TBZ. The highest weight loss corresponds to the control. Accordingly, IPBC and TBZ can be effectively used as preservatives for WPC. However, IPBC showed superior results compared to the TBZ and it is recommended for the WPCs preservation.  相似文献   

9.
以杨木粉、玉米淀粉和聚乳酸(PLA)为原料,甘油为相容剂,利用熔融挤出法制备了木粉-淀粉/PLA复合材料。研究了木粉含量对复合材料界面相容性、热性能、力学性能、流变性能以及吸水率的影响。结果表明:随着木粉含量的增加,PLA与木粉之间的界面相容性下降,木粉-淀粉/PLA复合材料的热稳定性下降,储能模量、损耗模量和复数黏度逐渐增加;随着木粉含量的增加,木粉-淀粉/PLA复合材料的拉伸强度和弯曲强度呈现先增大后减小的趋势,当木粉含量为18wt%时,复合材料的拉伸强度和弯曲强度均达到最大值,最大值分别为40.65 MPa和60.91 MPa;随木粉含量的增加,复合材料的断裂伸长率由9.64%减小到5.97%,而吸水率由5.38%增大到13.43%。  相似文献   

10.
The main goal of this work was to evaluate the technical feasibility of almond shell flour (ASF) as wood substitute in the production of wood–plastic composites (WPCs). The effects of organically modified montmorillonite (OMMT), as reinforcing agent, on the mechanical and physical properties were also investigated. In order to improve the poor interfacial interaction between the hydrophilic Lignocellulosic material and hydrophobic polypropylene matrix, maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent to all the composites studied. In the sample preparation, OMMT and ASF contents were used as variable factors. The morphology of the specimens was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The results of mechanical properties measurements indicated that when 3 wt.% OMMT were added, tensile and flexural properties reached their maximum values. At high level of OMMT loading (5 wt.%), increased population of OMMT lead to agglomeration and stress transfer gets blocked. The addition of OMMT filler decreased the water absorption and thickness swelling of composites. SEM study approved the good interaction of the almond shell flour with the polymer as well as the effectiveness of OMMT in improvement of the interaction. TEM study revealed better dispersion of silicate layers in WPCs loaded with 3 wt.% of OMMT. The improvement of physico-mechanical properties of composites confirmed that OMMT has good reinforcement and the optimum synergistic effect of OMMT and ASF was achieved at the combination of 3 and 50 wt.%, respectively. The findings indicated that almond shell as agro-waste material is a valuable renewable natural resource for composite production and could be utilized as a substitute for wood in composite industries.  相似文献   

11.
Hygroscopicity, low durability, and low thermal resistance are disadvantages of lignocellulosic materials that also plague wood-plastic composites (WPCs). Hemicellulose is the most hydrophilic wood polymer and is currently considered as a sugar source for the bioethanol industry. The objective of this research is to extract hemicellulose from woody materials and enhance the properties of WPC by diminishing the hydrophilic character of wood. Hemicellulose of Southern Yellow Pine was extracted by hot-water at three different temperatures: 140, 155, and 170 °C. Wood flour was compounded with polypropylene in an extruder, both with and without a coupling agent. Injection molding was used to make tensile test samples. The thermal stability of wood flour was found to have increased after extraction. Extraction of hemicellulose improved the tensile strength and water resistance of composites, which may indicate a decrease in the hygroscopicity of wood flour, better compatibility, and interfacial bonding of the filler and matrix.  相似文献   

12.
The development and validation of an analytical model that predicts the onset of frost-induced damage in wood–plastic composites (WPCs) is presented in this work. The mathematical model is based on the mechanics of a hollow cylinder subjected to an internal pressure caused by the expansion of freezing moisture bound in the wood–fiber reinforcement. The model is substantiated using experimental data from several published studies. Using a stochastic approach, the model is implemented to analyze the effect of wood fiber specie, fiber volume fraction, and matrix material properties on the frost resistance of fully and partially saturated WPCs. Results show that WPCs with high fiber contents, high moisture contents, and low polymer tensile strengths are most susceptible to frost-induced damage. Data also suggest that the use of softwood fibers (e.g., pine, spruce) and polymers with low moduli and high tensile strengths enhances the frost-resistance of WPCs.  相似文献   

13.
采用亚临界流体挤出法制备高密度聚乙烯(HDPE)/木粉复合材料,研究了亚临界流体种类(去离子水、正丙醇和乙醇)与温度对木塑复合材料(WPC)综合力学性能的影响。实验利用傅立叶变换红外光谱、差示扫描量热分析和扫描电镜分别对复合材料的化学组成、热变形温度和界面形貌作了相应的研究。结果表明,亚临界流体的高温高压可以对木纤维起到很好的溶胀作用,一定程度上打破了木素、半纤维素对纤维素的包裹作用,明显促进基体与木纤维之间的机械捏合与酯化反应,增加界面强度。在亚临界流体条件下,尤其在亚临界乙醇条件下,木粉在HDPE树脂基体中具有优异的分散性,拉伸断面处的断裂形式主要以基体与纤维断裂为主,说明HDPE/木粉的WPC具有较好的界面结合强度。  相似文献   

14.
不同改性剂对PP/木粉复合材料性能的影响   总被引:1,自引:0,他引:1  
研究了苯甲酸(BA)、硬脂酸(SA)、甲苯-2,4-二异氰酸酯(TDI)对聚丙烯/木粉复合材料的改性效果。结果表明,木粉经改性剂处理后,表面极性减弱,与聚丙烯的界面张力降低,相容性提高;所有改性剂均可提高复合材料的拉伸强度、冲击强度以及熔体流动性能,但对弯曲强度影响不大。用TDI/SA复合处理木粉,复合材料的综合性能最好。扫描电镜(SEM)分析表明,木粉经过处理后,木粉与聚丙烯间界面较模糊。  相似文献   

15.
In flooring applications, experimental data and insight from scientific investigations on wear properties of wood/polymer composites (WPCs) are important for engineers to understand how to design and formulate WPC materials with high resistance to wear. In this work, three different types of wood flour – namely Xylia kerrii Craib & Hutch., Hevea brasiliensis Linn., and Mangifera indica Linn. – were utilized and incorporated into poly(vinyl chloride) (PVC) with a fixed content (10 phr) of E-chopped strand glass fiber. The physical, mechanical and wear properties, in terms of specific wear rate, were then assessed as a function of wood content and sliding distance. The experimental results suggested that the addition of wood flour increased the flexural modulus and strength up to 40 phr; beyond this concentration, the flexural properties decreased. Hardness was not affected by the addition of wood flour. The mechanical and wear properties of WPVC composites were found to improve with the addition of the E-glass fiber. Xylia kerrii Craib & Hutch. wood exhibited the lowest specific wear rate for non-reinforced WPVC composites, whereas Hevea brasiliensis Linn. wood showed the lowest specific wear rate for the glass fiber reinforced WPVC composites. The longer the sliding distance, the greater the specific wear rate in all cases.  相似文献   

16.
采用熔融接枝法分别制备马来酸酐接枝聚乳酸、甲基丙烯酸缩水甘油酯接枝聚乳酸和马来酸酐/甲基丙烯酸缩水甘油酯共接枝聚乳酸,并利用红外光谱对接枝共聚物进行结构表征。分别以三种接枝共聚物为相容剂,采用注塑成型制备了木粉/PLA复合材料。利用扫描电子显微镜(SEM)对复合材料的断面形貌进行微观分析,结果表明,加入不同接枝共聚物后木粉/PLA复合材料两相看不出明显相界面,界面相容性得到改善。对不同接枝共聚物制备的复合材料的力学性能、加工流动性能和动态流变性能测定的结果显示,加入MAH/GMA共接枝聚乳酸后的木粉/PLA复合材料和未添加相容剂的复合材料相比,拉伸强度和冲击强度分别提高了9.54%和7.23%,复合体系的平衡扭矩和剪切热提高,储能模量及复数黏度均增大。  相似文献   

17.
朱李子  马晓军 《包装工程》2019,40(21):61-67
目的研究硅烷偶联剂KH550含量对木粉/P34HB复合包装材料性能的影响。采用KH550改性木粉,提高与聚(3-羟基丁酸酯-4-羟基丁酸酯)(P34HB)的结合强度,改善复合材料的力学性能和界面相容性。方法以KH550为改性剂,木粉和P34HB为原料,利用共混热压工艺制备改性木粉/P34HB复合材料;通过对复合材料的形貌进行观察,以及傅里叶变换红外光谱(FTIR)、热重分析(TGA)和力学性能分析,研究KH550质量分数不同时对复合材料界面相容性、力学性能和热性能的影响。结果添加KH550后,复合材料的的界面相容性得到改善;FTIR分析表明,KH550已经成功接枝到木粉中;适量的KH550提高了复合材料的热稳定性;复合材料的储能模量增加;复合材料的力学性能也有所提高。此外还得到了最佳的KH550添加量,即质量分数为0.5%。结论 KH550不仅使得木粉与P34HB的相容性得到改善,同时也增强了复合包装材料的力学性能和热性能。  相似文献   

18.
This study presents a comparison of the effect of various wood fibre types in polylactic acid and polypropylene composites produced by melt processing. The study also reveals the reinforcing effect of pelletised wood fibres compared to conventionally used wood flour or refined fibres. Composites containing 30 wt.% of chemical pulps, thermomechanical pulp and wood flour were produced by compounding and injection moulding. Fibre morphologies were analysed before and after melt processing. The dispersion of the fibres and mechanical performance of the composites were also investigated. Fibre length was reduced during melt processing steps, reduction being higher with longer fibres. Wood fibres provided clearly higher plastic reinforcement than wood flour. Comparing the wood fibre types, TMP fibres provided the highest improvement in mechanical properties in polylactic acid composites with uniform fibre dispersion. In polypropylene composites, fibre selection is not as crucial.  相似文献   

19.
This study examined the effect of type of wood fibre source on the physical and mechanical properties of wood fibre-polypropylene composites. Wood flour, fibres of heat-treated wood and pellets were used as sources of wood fibres in the manufacturing process. All studied wood fibre-polypropylene composites were made from 75% wood, 22% recycled polypropylene (PP) and 3% maleated polypropylene (MAPP). Wood fibre-polypropylene composites were compounded in a conical twin-screw extruder. Water absorption and thickness swelling were studied. Mechanical properties of the composites were characterised by tensile, flexural, and impact testing. Micromechanical deformation processes were investigated using scanning electron microscopy done on the fractured surfaces of broken samples. The durability of composites exposed to three accelerated cycles of water immersion, freezing and thawing was examined. The results showed that the density of the composites was a key factor governing water absorption and thickness swelling. A significant improvement in tensile strength, flexural strength, and Charpy impact strength was observed for composites reinforced with heat-treated fibre compared to composites reinforced with pellets and especially to wood flour reinforced composites. The flexural strength and dimensional stability performance reduced after exposure to freeze-thaw cycling for all composites, but the degree of these changes was dependent on the wood fibre source.  相似文献   

20.
木粉表面改性对聚氯乙烯/木粉复合材料性能的影响   总被引:1,自引:0,他引:1  
选用不同偶联剂对木粉(WF)进行表面改性。对聚氯乙烯/木粉(PVC/WF)复合材料力学性能测试结果表明,异氰酸酯偶联剂更适合对WF的表面改性。WF经异氰酸酯偶联剂处理后疏水性得到明显改善。随WF填充量增加,PVC/WF复合材料冲击强度和线性热膨胀系数下降,吸水率和维卡软化温度上升,并且异氰酸酯偶联剂处理WF填充的PVC/WF复合材料(PVC/WF-1)各种性能都较未处理WF填充的PVC/WF复合材料(PVC/WF-2)好。填充30份时,PVC/WF-1复合材料的拉伸强度比纯PVC提高约10%,吸水率小于0.6%,维卡软化温度比PVC提高2.9℃,线性热膨胀系数从PVC的8.55×10-5℃-1降低到6.01×10-5℃-1。扫描电镜观察结果证明异氰酸酯偶联剂处理WF有利于提高WF与PVC基体的界面相互作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号