首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrodeposited thick films of FePt (with the nominal composition 50 % Fe/50 % Pt) on three metallic (Au, Ag, Au) underlayers were annealed at various temperatures. The magnetic and morphological properties of the resulting films were then monitored. The Au and Ag underlayers promoted the growth of the (bct) L10 FePt phase. The greater growth of this phase in the films deposited on the Ag underlayer led to the crystallographic texturing in the (001) direction. This was accompanied by a significant magnetic anisotropy and a negative shift of the remanent magnetization in the presence of an applied field. The coercivity of the Ag underlayer films increased to 18 kOe while the coercivity of the Au underlayer films decreased to ~2 kOe when the annealing temperature was increased to 800 °C.  相似文献   

2.
Perpendicular magnetic recording media, composed of granular-type FePt-MgO films on Fe-Ta-C soft magnetic underlayer (SUL), have been fabricated on to 2.5-in glass disks. [001] textured FePt granular films with high-perpendicular magnetic anisotropy were obtained by annealing the FePt/MgO multilayer films. The FePt grain size, perpendicular coercivity, magnetic activation volume, and the exchange coupling between the FePt grains were found to be strongly dependent on the initial multilayer structures and the annealing conditions. The recording performance of the disks was evaluated by a spin-stand. The obtained results reveal a close correlation between the recording performance and magnetic properties. The thermal stability of the granular-type FePt media was studied using high-temperature magnetic force microscopy (MFM) technique, equipped with in situ sample heating, in the temperature range 25/spl deg/C-200/spl deg/C. The estimated signal decay at high temperature is ascribed to the temperature dependent magnetic anisotropy behavior.  相似文献   

3.
Zhao Q  Wen G  Liu Z  Fan Y  Zou G  Li L  Zheng R  Ringer SP  Mao HK 《Nanotechnology》2011,22(12):125603
High-density, vertically aligned CrO(2) nanowire arrays were obtained via atmospheric-pressure CVD assisted by AAO templates. The CrO(2) nanowire arrays show remarkably enhanced coercivity compared with CrO(2) films or bulk. It was found that the length of the nanowires is greatly influenced by the pore diameter of the AAO template used. The growth mechanism and the pore size dependence of the CrO(2) nanowire arrays are discussed. The present method provides a useful approach for the synthesis of CrO(2) nanowire arrays. Such highly ordered nanowire arrays within an AAO template may have important applications in ultrahigh-density perpendicular magnetic recording devices and the mass production of spintronic nanodevices.  相似文献   

4.
FePt multilayer films were deposited on Si(1 0 0) substrate with thermally grown SiO2 film and sputtered Ag underlayer at room temperature by dc magnetron sputtering and subsequently annealing in vacuum. Experimental results suggest that proper thickness of Ag underlayer and slightly rich of Fe content can effectively induce the (0 0 1) texture of FePt films. A Fe57.4Pt42.6 thin film on the 8 nm Ag underlayer exhibits a large perpendicular coercivity of 7.6 kOe with magnetic remanence close to 1.  相似文献   

5.
Highly ordered nanowire arrays of NiFe2O4 spinel with a high aspect ratio were fabricated by sol–gel method associated with anodic aluminum oxide (AAO) templates. The preparation of nanowires was carried out by sol–gel method using nickel nitrate, ferric nitrate and citric acid. The molar proportion of nickel nitrate to ferric nitrate and citric acid was 1:2:3. The suction with 0.1 mbar vacuum was used to draw the gel into the AAO nanochannels. The results showed that the lowest annealing temperature is around 600?°C to obtain the single-phase nanostructured NiFe2O4. The NiFe2O4 nanowires were also uniform and parallel. TEM pictures determined the diameter size of the nanowires of about 100 nm. The magnetic results also showed that the wires have an easy axis of magnetization along their length and they are fully saturated in a field of 7 kOe. It seems that this material could be a good candidate for high perpendicular magnetic storage devices.  相似文献   

6.
Superparamagnetic and flexible Fe2O3 nanowire arrays were fabricated by the controlled electrostatic assembly of iron oxide nanoparticles and poly(dimethyldiallylammonium chloride) (PDADMAC) in an anodic aluminum oxide (AAO) template. The micrograph of iron oxide nanowire arrays was characterized by field emission scanning electron microscopy. The magnetic hysteresis loops obtained by a vibrating sample magnetometer confirm that the nanowire arrays have superparamagnetic properties. The filling ratio of iron oxide nanoparticles and polymers in the AAO template was affected by four factors, including the concentration of iron oxide nanoparticles, the pore diameter of the AAO template, the charge ratio of iron oxide nanoparticles and PDADMAC, and the molecular weight of polyacrylic acid. The effect of the AAO template on the diameter and length of the nanowire arrays was also analyzed. In addition, the nanowire arrays were shown to be flexible because of the presence of polymers. These nanowire arrays with superparamagnetic and flexural properties have potential applications in sensor probes.  相似文献   

7.
The [FePt]94Au6 and [FePt]90Ag10 nanoparticle arrays were synthesized on Si substrates by a reverse micellar method, combined with plasma treatment and in-situ deposition of a SiO2 overlayer, and the post annealing step was performed to drive the face-centered cubic to tetragonal phase transition. These FePt nanoparticles exhibit a quasi-hexagonal order with tailored inter-particle spacing and particle size. The effects of the Ag and Au on the structural and magnetic properties of FePt were investigated. The results indicate that both Au and Ag additives can remarkably enhance the coercivity and reduce the ordering temperature, however, the optimum composition is different for them. The optimum composition is determined to be [FePt]94Au6 and [FePt]90Ag10, respectively, for which the ordering temperature of FePt nanoparticles is reduced by -100 degrees C. After 600 degrees C annealing, the [FePt]94Au6 and [FePt]90Ag10 nanoparticles are totally ferromagnetic with apparent larger coercivities of -7.0 kOe, which is about 3.8 kOe larger than that of the pure FePt nanoparticles. The mechanism of the chemical ordering acceleration may be attributed to the defects and strains caused by the Au/Ag additives.  相似文献   

8.
In this work we have studied the growth sequence of L10-CrPt antiferromagnetic layer effects on the microstructure and magnetic properties of the FePt/CrPt bilayer. The microstructure characteristics were investigated by means of X-ray diffraction and the magnetic properties were measured at room temperature by using a vibrating sample magnetometer. Structural analysis showed that the low-temperature ordering and the in-plane orientation of the FePt layer with the CrPt underlayer were promoted due to lattice mismatch optimized after annealing at 350 degrees. Meanwhile, magnetic analysis also revealed that the FePt/CrPt bilayer had much larger exchange bias (H(E)) and higher coercivity (Hc) when the CrPt layer was as the underlayer after annealing at 350 degrees.  相似文献   

9.
The controlled fabrication of highly ordered anodic aluminium oxide (AAO) templates of unprecedented pore uniformity directly on Si, enabled by new advances on two fronts - direct and timed anodisation of a high-purity Al film of unprecedented thickness (50 mum) on Si, and anodising a thin but pre-textured Al film on Si, has been reported. To deposit high-quality and ultra-thick Al on a non-compliant substrate, a prerequisite for obtaining highly ordered pore arrays on Si by self-organisation while retaining a good adhesion, a specially designed process of e-beam evaporation followed by in situ annealing has been deployed. To obtain an AAO template with the same high degree of ordering and uniformity but from a thin Al film, which is not achievable by the self-organisation alone, pre-patterning of the thin Al surface by reactive ion etching using a freestanding AAO mask that was formed in a separate process was performed. The resultant AAO/Si template provides a good platform for integrated growth of nanotube, nanowire or nanodot arrays on Si. Template-assisted growth of carbon nanotubes (CNTs) directly on Si was demonstrated via a chemical vapour deposition method. By controllably removing the AAO barrier layer at the bottom of the pores and partially etching back the AAO top surface, new CNT/Si structures were obtained with potential applications in field emitters, sensors, oscillators and photodetectors.  相似文献   

10.
采用两次阳极氧化法制备了孔洞排列有序的多孔氧化铝基底,并在其上用磁控溅射法制备了SmTbCo垂直磁化膜. 振动样品磁强计(VSM)测试结果显示,加入阳极氧化铝底层后可以将SmTbCo薄膜的矫顽力从370kA/m提高到530kA/m,并且随着氧化铝底层孔洞直径的减小,上层SmTbCo磁性薄膜的矫顽力与剩磁矩形比随之增大. 由薄膜断面的扫描电镜(SEM)照片可以看出,阳极氧化铝底层由于其自组织效应所形成规则密集的六角边形多孔结构能够明显促使上层的SmTbCo磁性薄膜生成柱状结构. 这一柱状结构提高了薄膜的矫顽力,从而拓宽了SmTbCo薄膜材料在超高密度垂直磁记录中的应用.  相似文献   

11.
End-closed NiCoFe-B nanotube arrays by electroless method   总被引:1,自引:0,他引:1  
A novel approach is obtained during the fabrication of NiCoFe-B nanotube arrays via electroless method. Porous anodic aluminum oxide (AAO) templates fabricated by anodization of aluminum foil were sensitized using PdCl2 solution and immersed into electroless plating baths at room temperature to produce nanotube arrays. Compositional and morphological properties of the nanotube arrays are characterized. Results indicates the formation of end-closed nanotubes with the dimension of 100-130 nm in outside diameter, which is determined by the pore size of the AAO template, and about 15 nm in thickness of tube walls. The possible formation mechanism of end-closed metallic nanotube arrays is discussed.  相似文献   

12.
The single-layered FePt films with thickness in the range of 5 to 50 nm are deposited directly on Si(100) substrate without underlayer, then post annealed at 700 degrees C by rapid thermal annealing (RTA) technique. As the film thickness of FePt is over 20 nm, the L1(0) FePt(111) preferred orientation is presented and tended to in-plane magnetic anisotropy. However, the L1(0) FePt(001) texture is obtained and exhibited perpendicular magnetic anisotropy as the film thickness is decreased to 10 nm. Its perpendicular coercivity (Hc(perpendicular)), saturation magnetization (Ms) and perpendicular squareness (S(perpendicular)) are 14.8 kOe, 795 emu/cm3 and 0.79, respectively. On the other hand, both the grain size and domain size of FePt film decrease with decreasing the film thickness of FePt. The grain size for 10-nm FePt film is as small as 9.7 nm with domain size of 123 nm, which reveal its significant potential as perpendicular magnetic recording media for ultra high-density recording.  相似文献   

13.
《Vacuum》2011,85(12):1435-1438
By making use of the dc magnetron sputtering system, the Au/FePt bilayers have been prepared on glass substrates and anodized aluminum oxide (AAO) membranes with an average pore diameter of around 200 nm. In both cases, the FePt films can be converted into the magnetically hard phase, namely L10 phase, after a heat treatment above 500 °C for 1 h. A nanoparticle-like structure can be observed in the 15-nm-thick FePt film on the AAO membrane. The experimental observations of the structure and the magnetism of the FePt films on the AAO membranes are firstly established.  相似文献   

14.
采用射频磁控溅射法在玻璃基片上制备了TbFeCo/Ag非晶垂直磁化膜,研究了Ag底层厚度对TbFeCo薄膜磁性能的影响。原子力显微镜、振动样品磁强计与磁光盘测试仪测量结果表明:薄的银底层具有较高的表面粗糙度可以显著增大TbFeCo薄膜的矫顽力,改善TbFeCo薄膜的磁光温度特性,该薄膜有望用作高密度垂直记录介质与光磁混合记录介质。  相似文献   

15.
High anisotropy L1(0) ordered FePt thin films are considered to have high potential for use as high areal density recording media, beyond 1 Tera bit/in2. In this paper, we review recent results on the synthesis and magnetic properties of L1(0) FePt nanocomposite films. Several fabrication methods have been developed to produce high-anisotropy FePt films: epitaxial and non-epitaxial growth of (001)-oriented FePt:X (X = Au, Ag, Cu, C, etc.) composite films that might be used for perpendicular media; monodispersed FePt nanocluster-assembled films grown with a gas-aggregation technique and having uniform cluster size and narrow size distribution; self-assembled FePt particles prepared with chemical synthesis by reduction/decomposition techniques, etc. The magnetic properties are controllable through variations in the nanocluster properties and nanostructure. FePt and related films show promise for development as heat-assisted magnetic recording media at extremely high areal densities. The self-assembled FePt arrays show potential for approaching the ultimate goal of single-grain-per-bit patterned media.  相似文献   

16.
Xu L  Tan LS  Hong MH 《Applied optics》2011,50(31):G74-G79
A novel hybrid approach to fabricate large-area well-ordered Ag/Au bimetallic nanodot arrays and its potential applications for biosensing is investigated. With the combination of laser interference lithography and the thermal annealing technique, Ag/Au bimetallic nanodots about ~50 nm are formed inside periodic nanodisk arrays at a dimension of ~530 nm on quartz substrates. Extinction spectra of the fabricated nanostructures show their localized surface plasmon resonance (LSPR) can be well controlled by Au concentration, which offers a means to flexibly tune the optical properties of the nanodot arrays. To study the sensitivity of the nanodot arrays, resonance wavelength changes per refractive index unit (RIU) are performed in different surrounding environments. This shows a 94% increase in peak shift per refractive index unit (nanometers/RIU) compared to the nanodot arrays formed only by thermal annealing. These results demonstrate a feasible approach to improve LSPR-based biosensor performance.  相似文献   

17.
Porous alumina templates (AAO) has attracted significant interest due to the fact that they are readily fabricated through a simple procedure and are extremely popular templates in nanoscience studies. In this paper, the effects of different pore-widening treatments on the pore quality of the AAO templates were investigated. Results show that, through a highly controllable chemical pore-widening process at low temperature, different pore dimensions and diameters of the AAO templates can be easily achieved in a nanometer-scale way without changing the interpore distance. Combining with anodization voltage control, AAO templates with desired size distribution can be obtained, which will be extremely useful in template technology and masks for lithographic application. Also, silver nanorods/wires of different dimensions have been fabricated from above AAO templates after pore diameter adjustments. Such nanostructure materials hold high potential for electronics, optics, mechanics and sensing technology.  相似文献   

18.
Monodisperse FePt nanoparticles with an average size of 4.11 nm were successfully synthesized via chemical co-reduction of iron acetylacetonate, Fe(acac)3, and platinum acetylacetonate, Pt(acac)2, by 1,2hexadecanediol as a reducing agent. Also (FePt)87Zn13 nanoparticles with average size of 4.24 nm were synthesized using the same method. The structural and magnetic properties of the prepared samples were respectively studied by XRD, TEM and VSM. L10 FePt ordered phase is formed at lower annealing temperature by addition of Zn. The (FePt)87Zn13 nanoparticles starts ordering after annealing at 400 °C, whereas FePt nanoparticles at 400 °C are still disordered alloys with superparamagnetic behavior. Additive Zn is very effective in decreasing the ordering temperature and enhancing the chemical ordering in (FePt)87Zn13 particles, So that coercivity 5200 Oe was measured for (FePt)87Zn13 nanoparticles annealed at 500 °C, compared with 1800 Oe for samples without Zn. This reduction in ordering temperature significantly reduces FePt particle coalescence and loss in positional order.  相似文献   

19.
S.Y. Chen  C.C. Huang  J.M. Wu 《Vacuum》2010,84(12):1435-1438
By making use of the dc magnetron sputtering system, the Au/FePt bilayers have been prepared on glass substrates and anodized aluminum oxide (AAO) membranes with an average pore diameter of around 200 nm. In both cases, the FePt films can be converted into the magnetically hard phase, namely L10 phase, after a heat treatment above 500 °C for 1 h. A nanoparticle-like structure can be observed in the 15-nm-thick FePt film on the AAO membrane. The experimental observations of the structure and the magnetism of the FePt films on the AAO membranes are firstly established.  相似文献   

20.
The FePt films with various thicknesses (t) of 5 to 50 nm are deposited on Si(100) substrate without any underlayer by in-situ annealing at substrate temperature (Ts) of 620 °C. A strong (001) texture of L10 FePt film is obtained and presents high perpendicular magnetic anisotropy as the film thickness increases to 30 nm. By further increasing the thickness to exceed 30 nm, the (111) orientation of L10 FePt is enhanced greatly, indicating that the quality of perpendicular magnetic anisotropy degrades when the thickness of the FePt film is greater than 30 nm. The single-layered FePt film with thickness of 30 nm by in-situ depositing at 620 °C shows good perpendicular magnetic properties (perpendicular coercivity of 1033 kA/m (13 kOe), saturation magnetization of 1.08 webers/m2 and perpendicular squareness of 0.91, respectively), which reveal its significant potential for perpendicular magnetic recording media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号