首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Copper and aluminum materials are extensively used in different industries because of its great conductivities and corrosion resistant nature. It is important to join dissimilar materials such as copper and aluminum to permit maximum use of the special properties of both the materials. The joining of dissimilar materials is one of the most advanced topics, which researchers have found from last few years. Friction stir welding (FSW) technology is feasible to join dissimilar materials because of its solid state nature. Present article provides a comprehensive insight on dissimilar copper to aluminum materials joined by FSW technology. FSW parameters such as tool design, tool pin offset, rotational speed, welding speed, tool tilt angle, and position of workpiece material in fixture for dissimilar Cu–Al system are summarized in the present review article. Additionally, welding defects, microstructure, and intermetallic compound generation for Cu–Al FSW system have been also discussed in this article. Furthermore, the new developments and future scope of dissimilar Cu–Al FSW system have been addressed.  相似文献   

2.
The microstructure and mechanical properties of the copper and steel bimetallic welded joint were analyzed. Research results show there was a friction interface transferring phenomenon in inertia radial friction welding (IRFW). A secondary friction interface (SFI) appeared in welded joints of H90 copper brass/D60 steel rod. The SFI showed an abnormal transferring phenomenon. The formation mechanism of the SFI was analyzed under the condition of H90 copper/D60 steel dissimilar metals in IRFW. A new model and formation mechanism were issued and used to explain the unusual transferring phenomenon and characteristic in the views of three gradients: temperature gradient, deformability gradient (large or super plastic deformability), and microstructure gradients. The microhardness and element diffusion also supported our viewpoints about the SFI transferring and provided proofs for the transferring mechanism.  相似文献   

3.
Joint of aluminum to copper sheets with an Al2219 particle interlayer was successfully achieved by ultrasonic spot welding (USW). Effects of clamping pressure and surface activation on the microstructure and mechanical performances of the joints were systematically studied. It turned out that the optimal clamping pressure is 60 psi, and surface activation is beneficial to obtain a sound joint. On combining the actions of optimal clamping pressure and surface activation, the interfacial combination was highly intimate, and more plastic deformation occurred in the weld interface. Appropriate clamping pressure (30–60 psi) was beneficial to the weld interface bonding, whereas beyond the critical value (60 psi) aluminum beneath the sonotrode tip would be squeezed out of the weld interface.  相似文献   

4.
In this study,AA 1050 aluminum alloy and commercially pure copper in annealed and severely plastic deformed conditions were used.The technique used for imposing the severe strain to the sheets was constrained groove pressing(CGP) process.The annealed and severely plastic deformed sheets were subjected to friction stir welding(FSW) at different rotation and traverse speeds.Cu was placed in advancing side.Constant offset of approximately 1 mm was used toward Al side for all welds.A range of welding parameters which can lead to acceptable welds with appropriate mechanical properties was found.For the FSWed CGPed samples,it was observed that the welding heat input caused grain growth and decrease in hardness value at Al side of the stir zone.It was found that,generally the weakest parts of weld joints of annealed and CGPed samples were Al base metal and stir zone,respectively.Further investigations showed that several forms of intermetallic compounds were produced.  相似文献   

5.
目的为了获得较好的铝铜异种材料搅拌摩擦焊焊缝,研究旋转速度与焊接速度对焊缝成形的影响规律。方法采用对接的方式对4mm厚的纯铝和紫铜进行搅拌摩擦焊,对比了不同旋转速度和焊接速度对铝铜异种金属焊缝表面的影响,并对焊缝内部成形变化进行了分析。结果旋转速度和焊接速度对焊缝的成形影响较大,当旋转速度为1200 r/min,焊接速度为10 mm/min时,焊缝表面成形美观,焊缝表面相对较为光滑,焊缝内部存在相互交叠的片层结构和漩涡状结构,焊缝内部未见明显缺陷;与旋转速度1200 r/min,焊接速度10mm/min相比,在焊接旋转速度减小或者焊接速度变大时,由于焊接热输入减小,造成焊缝表面出现沟槽、孔洞等焊接缺陷,同时搅拌针的旋转搅拌作用影响焊缝成形和焊缝内部缺陷的产生。结论选择合适的旋转速度和焊接速度能够获得宏观成形较好和内部缺陷较少的焊缝。  相似文献   

6.
目的 研究搅拌头转速和轴套下压量对异质铝合金回填式搅拌摩擦点焊接头的组织及力学性能的影响。方法 采用回填式搅拌摩擦点焊技术对7050铝合金和2524铝合金进行搭接焊试验,焊接完成后利用光镜、体式显微镜、扫描电镜对组织进行观察,另外,测试拉伸剪切载荷和显微硬度分布,最后对断裂行为进行了研究。结果 接头区域可以分为焊核区、热力影响区、热影响区、母材4个区域,焊核区晶粒呈细小等轴状,热力影响区晶粒呈粗大长条状。随搅拌头转速的增大,拉剪载荷降低,当转速为1500 r/min时拉剪载荷值最高,其值为7.499 44 kN。热影响区的显微硬度比母材低,最小值为HV106。接头的断裂方式可以分为剪切型断裂、塞型断裂、剪切-半环型断裂。结论 在一定工艺参数范围内,通过适当降低搅拌头转速能显著提高接头的拉剪载荷,轴套下压量对接头的断裂方式影响显著。  相似文献   

7.
摩擦速度对异种金属摩擦焊接头组织性能的影响   总被引:1,自引:0,他引:1  
研究了摩擦速度对4Cr14Ni14W2Mo-4Cr10Si2Mo摩擦焊接头组织性能的影响。根据摩擦产热机制,分析了摩擦速度改变焊合区组织和性能梯度以及碳化物聚集程度的原因,通过选取适中的摩擦速度,使舰船柴油机双金属气阀摩擦焊接头的抗拉强度达到987MPa,弯曲角达到87。  相似文献   

8.
铝/钢异种金属连接结构在国防领域和国民生产、生活中更加广泛应用的前提,是获得良好的接头综合性能,但铝/钢焊接时易出现裂纹、金属间化合物等,严重影响了焊接接头质量。摩擦焊作为一种低温高效的固相连接方法,在新材料连接、高性能装备制造等领域受到了高度重视。其中,搅拌摩擦焊由于其可焊接头形式丰富而被重点关注。从搅拌摩擦焊的接头形式、工艺参数、力学性能及界面组织4个方面,分别介绍了铝/钢搅拌摩擦焊的研究进展,为其深入研究提供依据。  相似文献   

9.
本文着重介绍了6063 -T6铝合金管连续驱动摩擦焊接工艺,以及6063 -T6铝合金管采用连续驱动摩擦焊接的结果及分析,表明只要选择合理的焊接工艺参数,在6063 -T6铝合金管批量生产中采用连续驱动摩擦焊接是可行的.  相似文献   

10.
Dissimilar friction stir welds were produced in 3 mm thick plates of AA6082-T6 and AA5083-H111 aluminum alloys using SiC as reinforcing material. The optimum weld presents a good distribution of nanoparticles in the weld nugget and mechanical mixing of the two alloys as well as further grain refinement compared to the one without nanoparticles. Higher hardness in the weld nugget is also evidenced, followed by enhanced ultimate tensile strength and elongation values. All specimens, after the tensile test, were lead to fracture at the heat affected zone of AA6082-T6 and specifically at the region of the lowest hardness.  相似文献   

11.
目的 研究焊接速度、搅拌头旋转速度和下压量对异种铝合金搅拌摩擦焊接头力学性能的影响,找出最佳工艺参数,从而进一步提高接头的力学性能。方法 采用正交实验法对1.5 mm厚5052/6061异种铝合金搅拌摩擦焊接进行实验设计,焊接完成后,观察焊缝宏观形貌,然后将试件制成标准拉伸试样进行拉伸实验,拉伸实验完成后用扫描电镜观察焊接接头的断口形貌,最后运用极差分析法和方差分析法分别对实验结果进行分析。结果 在选取的工艺参数范围内,搅拌头旋转速度影响最大,其次是焊接速度,下压量影响最小。当焊接速度为120 mm/min、转速为1400 r/min、下压量为1.5 mm时,接头抗拉强度达到了最大值194 MPa,伸长率也达到了最大值9.62%。结论 在一定工艺参数范围内,提高焊接速度或搅拌头的旋转速度能显著提高接头的力学性能,而下压量对接头力学性能影响不显著。  相似文献   

12.
郑洋  宿振宇  张璇 《材料导报》2021,35(z2):346-352
汽车轻量化是实现燃油汽车节能减排、新能源汽车增程降耗的有效手段,已成为汽车工业可持续发展的必经之路.多材料混合车身在兼顾安全与成本的基础上,通过轻质材料和先进制造工艺的合理使用来降低车重,是目前汽车轻量化的主流研究方向之一.作为铝、镁资源大国,发展铝?镁混合车身结构及相应的连接技术是符合我国国情的汽车轻量化解决路径.然而,氩弧焊、电阻焊、高能束焊等熔焊技术难以制备高质量铝/镁异质接头,液态焊材剧烈反应在连接界面处形成的粗大晶粒和Al?Mg金属间化合物极易造成接头发生组织恶化、性能下降等问题.搅拌摩擦焊(Friction Stir Welding,FSW)是一种新型固相焊接技术,其通过搅拌头产生的摩擦热促进金属材料的塑性变形以提高其互相混合程度,从而实现焊材的连接,在铝、镁异种合金的连接方面具有广阔的应用前景,被誉为"焊接史上的第二次革命".本文从接头成形过程与微观组织、焊接工艺对接头性能的影响、接头性能的改善方法三个方面总结了铝/镁异种合金FSW技术的研究进展,针对搅拌头结构优化、超声振动辅助FSW、添加中间层或钎料、复合焊接技术等接头性能改善的最新研究结果,展望了常规和改型FSW技术未来的重点研究方向,旨在为铝、镁异种合金的连接及高质量铝/镁异质接头的设计与制备提供参考.  相似文献   

13.
文中介绍了铝基复合材料搅拌摩擦焊搅拌头材料选择和结构设计方案。根据铝基复合材料复杂的微观和宏观结构,选定钢结硬质合金GT35制造搅拌头,并与选用工具钢制作的普通搅拌头进行对比。对比结果表明,普通搅拌头焊后磨损严重,焊缝质量较差。对搅拌头形状和尺寸进行了设计:最初的“一字凹凸槽”设计存在不同心德患,给加工制造造成困难;后改为分体式搅拌头,采用螺纹连接。采用这种搅拌头能得到表面光滑,宏观形貌良好的接头。  相似文献   

14.
目的研究铝铜异种材料的搅拌摩擦焊搭接工艺,揭示搭接接头界面行为演变的基本规律。方法对1mm的6061铝合金与1 mm的紫铜薄板进行搅拌摩擦焊搭接焊接,测试焊缝的力学性能,对焊缝组织进行分析。结果焊缝表面成形良好,焊缝内部无缺陷。接头的最高拉伸强度达到1447 N,观察拉伸接头断口形貌,发现断裂均发生在上层铝合金的热影响区。结论接头连接界面区域生成钩状"自锁紧"结构,这种钩状"自锁紧"结构增加了铝铜之间的有效接触面积,有利于提高焊缝连接强度。  相似文献   

15.
Implementing differential rotation speeds of pin and shoulder in the friction stir welding process is considered. Experimental investigations were carried out using a newly designed and fabricated apparatus for dual-rotation speed friction stir welding. Metallographic studies demonstrated that appropriate selection of separate pin and the shoulder rotation speeds not only results in defect-free joints, but also affects the weld zone by controlling the heat input delivered. An energy model for predicting maximum temperature was extended to the dual-rotation speed friction stir process. The model was verified using the previous experimental results reported in the literature.  相似文献   

16.
Friction stir spot welding was done in transformation-induced plasticity steel sheets coated with zinc. The influence of tool rotational speed and dwell time on the microstructure and mechanical properties of lap-joints were investigated. After processing, different zones were formed in the joints. Microstructures in each zone depended on the welding conditions employed. Higher dwell time coupled with higher rotational speed promoted the deposition of a large amount of allotriomorphic ferrite beside the keyhole left by the pin. Coalesced bainite formation was stimulated by the deformation. Mechanical and chemical stabilization of the austenite occurred in different welding zones. Some zinc from the coating remained in the joint, in the stirring zone, representing a partial bonding between the steel sheets. The strength of the welds depended on a complex interaction between geometrical features, such as bonding ligament length and distance between the zinc and the keyhole left by the pin and the resultant microstructure in the stirring zone. The highest joint strength was observed for the “lowest tool rotational speed–highest dwell time” combination of welding parameters.  相似文献   

17.
The majority of this research has concentrated on developing the self-support friction stir welding(SSFSW) tool which consists of a big concave upper shoulder and a small convex lower shoulder, and procedures for making reliable welds in aluminum hollow extrusion. The 5-mm-thick 6082-T6 aluminum alloy was self-support friction stir welded at a constant tool rotation speed of 800 r/min. The effect of welding speed on microstructure and mechanical properties was investigated. The results of transverse tensile test indicated that the tensile strength of joints increased and the elongation decreased with increasing welding speed. The whole values of microhardness of SSFSW joints increased with increasing welding speed from 10 to 200 mm/min. The defectfree joints were obtained at lower welding speeds and the tensile fracture was located at the heat-affected zone(HAZ) adjacent to the thermo-mechanically affected zone(TMAZ) on the advancing side. The investigation of the flow pattern of the softened metal around the SSFSW tool revealed that the flow pattern of the softened metal was driven by two shoulders and the stir pin. The failure of specimens in tension presented the ductile fracture mode.  相似文献   

18.
Ultrasonic welding technology is a new and emerging concept, which can be applied to many industrial applications. The vital part of this technology is the horn, which acts as a tool, upon which the pressure and high-frequency vibration is applied to create a solid-state weld. In this study, a special type of horn is designed and its length is determined analytically. Dimensions obtained by finite-element method (FEM) are employed for the horn used in the present experiments to weld brass with aluminum sheet of thickness 0.1 mm. The dynamic analysis is also performed to find out the stress and amplitude distribution in the horn under loading conditions. Welding has been carried out using various parameter combinations in order to improvise the weld strength. Maximum weld strength of 4.05 MPa is obtained under the optimum welding conditions of 0.21 s weld time, 0.26 MPa weld pressure, and 60 µm vibration amplitude. The microhardness test also has been done on the optimized results to show the plastic flow at the weld zone. It confirms that the hardness of both materials up to 20 µm distance around the weld zone is increased with respect to the parent materials.  相似文献   

19.
The characterization of microstructure evolution in friction stir welded aluminum alloy was carried out by optical microscopy (OM) and transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). The weld nugget consisted of very fine equiaxed grains and experienced dissolution of nearly half of metastable precipitates into the matrix during welding. Thermomechanically affected zone (TMAZ) also experienced dissolution of precipitates but to a lesser extent whereas coarsening of precip...  相似文献   

20.
搅拌摩擦焊接(FSW)传热过程直接决定工件所经历的热循环,进而影响焊接接头的微观组织和力学性能。同时温度场的分析对于预测接头残余应力和变形,以及焊缝区硬度揶具有重要意义。本文在工艺研究的基础上。分析了FSW的产热过程;采用K(EU-2)型热电偶(测量温度范围0~1300℃)配合XMT-101型数显仪,对焊接过程中紫铜板的温度分布与变化进行了测量。初步获得了谊焊接过程的热循环规律。为进一步研究搅拌摩擦焊接温度场奠定了一定的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号