首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, dissimilar friction stir welding of aluminum 5052 and stainless steel 304 has been carried out with different process parameters. This investigation provides a better insight regarding the defect formation of the weld joints with tilt angles ranging from 0 ° to 2.5 °. The experiments were conducted according to Taguchi L9 orthogonal array by changing the tool rotational speed, and welding speed. The tool pin was kept 70 % towards the aluminum with the tool rotational speed ranging from 800 min−1 to 1200 min−1 with a varying traverse speed of 5 mm/min to 15 mm/min. The bottom part of the stir zone was perfectly welded without any defects. Tunnel defect was detected just above the bottom welded surface. Microstructural analysis reveals that the weld between both materials is formed on the retreating side, whereas on the advancing side, the weld was formed with void defects. Mostly, the stir zone is filled with irregular shaped aluminum and steel parts which were detached from the base material. Several other defects such as voids, cracks, and fragmental defects were observed in the stir zone irrespective of the process parameters. It was observed from the experimental investigations that the tunnel defect can be reduced by increasing the tilt angle.  相似文献   

2.
目的 采用搅拌摩擦焊,对比分析大气环境和水下环境下铝/铜接头的组织与性能,以期获得力学性能更优异的铝/铜焊接接头。方法 利用搅拌摩擦焊,在焊接速度为40 mm/min、旋转速度为1 000 r/min的条件下,分别在大气环境和水下环境下对厚度为9 mm的6061铝合金板和T2纯铜板进行焊接。然后,对铝/铜界面、焊核区进行扫描电镜及能谱分析,并对铝/铜界面及焊核区进行物相分析,确定产物相组成。最后,对铝/铜试样进行拉伸及硬度检测。结果 铝/铜接头均无裂纹、气孔等缺陷。铜颗粒弥散分布在焊核区,铝/铜界面形成金属间化合物层。水下搅拌摩擦焊下界面元素扩散距离明显变短,且金属间化合物厚度更薄。铝/铜接头的金属间化合物为AlCu和Al4Cu9。大气环境焊接下接头的抗拉强度为130.6 MPa,断裂方式为脆性断裂;水下焊接下接头的抗拉强度为199.5 MPa,断裂方式为韧性断裂。水下环境下的接头硬度值更高,其中热影响区的硬度最低值约为65HV。结论 水下搅拌摩擦焊铝/铜接头无裂纹、气孔等缺陷。组织上,水下搅拌摩擦焊的铝/铜接头界面元素扩散距离更短,硬脆的金属间化合物更少;性能上,水下搅拌摩擦焊的铝/铜接头强度更高,抗拉强度达到199.5 MPa,达到母材的74.4%。  相似文献   

3.
In this study, an experimental investigation has been carried out on microstructure and mechanical properties of friction stir welded copper/brass dissimilar joints. Effect of axial tool force to welding quality has been investigated under obtained optimal tool rotation rate and tool traverse speed conditions. The tool for the dissimilar copper/brass friction stir welding manufactured from X155CrMoV12–1 cold work tool steel with material number of 1.2379. The friction stir welding quality was investigated by welding surface inspections, microstructural studies, micro hardness measurements and tensile tests. The experimental studies have shown that constant axial tool force during pre‐heating and during welding process are very important. As a result, by using 2.5–3 kN of axial tool force during pre‐heating and 5.5 kN of axial tool force during welding process, copper/brass dissimilar joints with well appearance and higher mechanical strength can be obtained.  相似文献   

4.
Copper and aluminum materials are extensively used in different industries because of its great conductivities and corrosion resistant nature. It is important to join dissimilar materials such as copper and aluminum to permit maximum use of the special properties of both the materials. The joining of dissimilar materials is one of the most advanced topics, which researchers have found from last few years. Friction stir welding (FSW) technology is feasible to join dissimilar materials because of its solid state nature. Present article provides a comprehensive insight on dissimilar copper to aluminum materials joined by FSW technology. FSW parameters such as tool design, tool pin offset, rotational speed, welding speed, tool tilt angle, and position of workpiece material in fixture for dissimilar Cu–Al system are summarized in the present review article. Additionally, welding defects, microstructure, and intermetallic compound generation for Cu–Al FSW system have been also discussed in this article. Furthermore, the new developments and future scope of dissimilar Cu–Al FSW system have been addressed.  相似文献   

5.
This research aimed to weld dissimilar metals joints, AA6061 aluminum alloy and SS400 low-carbon steel, and find the optimum operating conditions of friction stir welding. In dissimilar metals butt joint by friction stir welding procedures, there are four major controllable factors, which are tool rotation speed, transverse speed (feed rate), tool tilt angle with respect to the workpiece surface and pin tool diameter. Understandably, not all the controllable factors are included in this article. The quality of dissimilar metals butt joints is evaluated by the impact value, which has not been discussed in literatures. In addition, an uncontrollable parameter, which is the tensile strength, is used to double-check its quality based on the excellent impact value. Analysis of variance (ANOVA) is used to analyze the experimental data. The Taguchi technique with ANOVA is also used to determine the significant factors of performance characteristics. The results are expected to serve as references to overland and aquatic transportation machines for weight reduction.  相似文献   

6.
Nowadays aluminum alloys substitute copper in various applications for weight reduction and cost savings. This paper presents fuzzy-grey Taguchi technique for optimization of friction stir welding condition with seven weld quality attributes of dissimilar Al/Cu joints with the minimum number of experiments for effective productivity and product quality. Taguchi's L16 orthogonal array was used to conduct the experiments. Fuzzy inference system was adapted to convert the multi quality characteristics into an equivalent single quality parameter which was optimized by Taguchi approach. Four parameters namely, rotational speed of the tool, welding speed, plunging depth and tool pin offset were varied in four levels for investigating the effects on the process output like tensile strength, compressive strength, percentage of elongation, bending angle, weld bead thickness and average hardness at the nugget zone. The hardness profile is consistent with the variation of the structure within the nugget zone (NZ). Confirmation experiment was conducted using predicted optimum parameter setting and it showed that the proposed approach could efficiently optimize weld quality parameters. The microstructural analyses were also performed for all the zones of the joints at both Al and Cu sides. It revealed the finer grain size at the NZ compared to the base material due to dynamic recrystallization.  相似文献   

7.
The aim of this work is to present a case study relating to the dissimilar friction stir welding (FSW) ability of AA 7075‐T651 and AA 6013‐T6 by applying pin offset technique. An orthogonal array L18 was conducted to perform the overlapped weld seams using three different values of pin offset, welding speed and tool rotational speed along with two different pin profiles determine the impact of welding parameters on the tensile properties of friction stir welded joints. The nugget zone for each of overlapped weld seams exhibited a complex structure and also, the pin offset and profile also were found to have a great impact on the microstructural evolution of the nugget zone. The ultimate tensile strength, elongation at the rapture and bending strength of welded joints were measured in the ranges of 194–215 MPa, 1.79–3.34 % and 203–352 MPa. From the Taguchi based Grey relational analysis, the optimum welding condition was determined for the welded joint performed using a single fluted pin profile with the zero pin offset, tool rotational speed of 630 min?1 and welding speed of 63 mm/min. Microstructural and macro‐structural observations revealed that welded joints exhibiting lower tensile strength are consistent of various types of defects (e. g. cracks, tunnels and cavities). The fracture location of welded joints was found to be on the heat affected zone and between the heat affected zone and AA 6013‐base metal. The tool and pin wear was not observed during the welding applications  相似文献   

8.
目的在保证搅拌速度一定时,针对8 mm厚的7A52铝合金,在不同焊接速度下采用搅拌摩擦焊(FSW)进行焊接试验,研究其焊接接头的显微组织及力学性能。方法利用搅拌摩擦焊机进行对接焊接,焊后制取金相试样观察焊接接头宏观形貌和显微组织,并测定其力学性能。结果7A52铝合金FSW焊接接头焊核区的面积随着焊接速度的增大而增大,当焊接速度为250mm/min时,焊接接头的焊核区面积最大,焊核区的显微组织都为细小的等轴晶,焊接接头横截面的焊核区呈明显"洋葱环"的形貌,而热力影响区的结构特征则呈现出了较高的塑性变形流线层。焊接接头显微硬度分布都呈现出"W"形变化,在焊接速度为150 mm/min时,焊接接头的平均抗拉强度能达到452 MPa,达到了母材抗拉强度的89%。结论通过对不同焊接速度下7A52铝合金FSW焊接接头的组织和性能进行研究,得到了不同焊接速度下焊接接头组织和力学性能。  相似文献   

9.
目的 研究搅拌头转速和轴套下压量对异质铝合金回填式搅拌摩擦点焊接头的组织及力学性能的影响。方法 采用回填式搅拌摩擦点焊技术对7050铝合金和2524铝合金进行搭接焊试验,焊接完成后利用光镜、体式显微镜、扫描电镜对组织进行观察,另外,测试拉伸剪切载荷和显微硬度分布,最后对断裂行为进行了研究。结果 接头区域可以分为焊核区、热力影响区、热影响区、母材4个区域,焊核区晶粒呈细小等轴状,热力影响区晶粒呈粗大长条状。随搅拌头转速的增大,拉剪载荷降低,当转速为1500 r/min时拉剪载荷值最高,其值为7.499 44 kN。热影响区的显微硬度比母材低,最小值为HV106。接头的断裂方式可以分为剪切型断裂、塞型断裂、剪切-半环型断裂。结论 在一定工艺参数范围内,通过适当降低搅拌头转速能显著提高接头的拉剪载荷,轴套下压量对接头的断裂方式影响显著。  相似文献   

10.
In this study, the effect of plate positioning on mechanical properties of dissimilar lap joints was investigated by friction stir spot welding (FSSW) process. The determination of the welding parameters plays an important role for the weld strength. For the effective use of the dissimilar aluminum joints, the FSSW must have an adequate strength. The quality of the joint was evaluated by examining the characteristics of the joining efficiency as a result of the lap-shear tensile test. Four process parameters were selected: the tool rotation speed, dwell time, tool plunge depth, and tilt angle.The process parameters were optimized by Taguchi technique based on Taguchi’s L9 orthogonal array. The optimum welding process parameters were predicted, and their percentage of contribution was estimated by applying the signal-to-noise ratio and analysis of variance. The experimental results showed that the positioning of the plates played an important role on the strength of the joints. Finally, the results were confirmed by further experiments.  相似文献   

11.
6005A-T6 aluminum alloy is welded by stationary shoulder friction stir welding (SSFSW). At a constant rotational velocity of 2000 rpm, the effect of welding speed on mechanical properties of SSFSW joint are investigated in detail. Defect-free joint with gloss surface and small flash is attained and no cracks appear at the bending angle of 180°. Compared with traditional friction stir welding (FSW), width of rotational shoulder affected zone is relatively small because of the smaller diameter of rotational shoulder. Increasing welding speed is benefit for reducing the width of softening region and the softening degree. The fracture position of welding joint locates in thermo-mechanically affected zone and the fracture surface morphology presents the typical ductile fracture. The maximum tensile strength of joint at the welding speed of 400 mm/min reaches 82% of base metal (BM).  相似文献   

12.
Joints of Al 5186 to mild steel were performed by using friction stir welding (FSW) technique. The effects of various FSW parameters such as tool traverse speed, plunge depth, tilt angle and tool pin geometry on the formation of intermetallic compounds (IMCs), tunnel formation and tensile strength of joints were investigated. At low welding speeds due to the formation of thick IMCs (which was characterized as Al6Fe and Al5Fe2) in the weld zone the tensile strength of joints was very poor. Even at low welding speeds the tunnel defect was formed. As the welding speed increased, the IMCs decreased and the joint exhibited higher tensile strength. The tunnel defect could not be avoided by using cylindrical 4 mm and 3 mm pin diameter. By using a standard threaded M3 tool pin the tunnel was avoided and a bell shape nugget formed. Therefore tensile strength of the joint increased to 90% of aluminum base alloy strength. At higher welding speed and lower tool plunge depth, the joint strength decreased due to lack of bonding between aluminum and steel. Based on the findings, a FSW window has been developed and presented.  相似文献   

13.
Abstract

The microstructural change related with the hardness profile has been evaluated for friction stir welded, age hardenable 6005 Al alloy. Frictional heat and plastic flow during friction stir welding created fine and equiaxed grains in the stir zone (SZ), and elongated and recovered grains in the thermomechanically affected zone (TMAZ). The heat affected zone (HAZ), identified only by the hardness result because there is no difference in grain structure compared to the base metal, was formed beside the weld zone. A softened region was formed near the weld zone during the friction stir welding process. The softened region was characterised by the dissolution and coarsening of the strengthening precipitate during friction stir welding. Sound joints in 6005 Al alloys were successfully formed under a wide range of friction stir welding conditions. The maximum tensile strength, obtained at 507 mm min-1 welding speed and 1600 rev min-1 tool rotation speed, was 220 MPa, which was 85% of the strength of the base metal.  相似文献   

14.
The α + β titanium alloy, Ti–6Al–4V, was friction stir welded at a constant tool rotation speed of 400 rpm. Defect-free welds were successfully obtained with welding speeds ranging from 25 to 100 mm/min. The base material was mill annealed with an initial microstructure composed of elongated primary α and transformed β. A bimodal microstructure was developed in the stir zone during friction stir welding, while microstructure in the heat affected zone was almost not changed compared with that in the base material. An increase in welding speed increased the size of primary α in the stir zone. The weld exhibited lower hardness than the base material and the lowest hardness was found in the stir zone. Results of transverse tensile test indicated that all the joints had lower strength and elongation than the base material, and all the joints were fractured in the stir zone.  相似文献   

15.
Abstract

The weldability of friction stir welded hot rolled AZ31B-H24 magnesium alloy sheet, 4 mm in thickness, was evaluated, varying welding parameters such as tool rotation speed and travel welding speed. Sound welding conditions depended mainly on sufficient heat input during the welding process. Insufficient heat input, which was generated in the case of higher travel speed and lower rotation speed, caused an inner void or lack of bonding in the stir zone. The microstructure of the weld zone was composed of five regions: base metal, heat affected zone, thermomechanically affected zone, stir zone I and stir zone II. Unlike the general feature of friction stir welded aluminium alloys, the grain size of the weld zone was larger than that of the base metal. Stir zones I and II were characterised by partial dynamic recrystallisation and full dynamic recrystallisation, respectively. The hardness of the weld zone was lower than that of the base metal owing to grain growth. A wider range of defect free welding conditions was acquired at higher tool rotation speed and lower welding speed. The maximum tensile strengh was 240 MPa, which was ~85% of the base metal value of 293 MPa. The fracture location was close to the stir zone.  相似文献   

16.
This work investigates the influence of friction stir welding parameters on the mechanical properties of the dissimilar joint between AA2024-T3 and AA7075-T6. Experiments are conducted consistent with the three-level face-centered composite design. Response surface methodology is used to develop the regression model for predicting the tensile strength of the joints. The analysis of variance technique is used to access the adequacy of the developed model. The model is used to study the effect of key operating process parameters namely, tool rotation speed, welding speed and shoulder diameter on the tensile strength of the joints. The results indicate that friction stir welding of aluminum alloys at a tool rotation speed of 1050 min−1, welding speed of 40 mm/min and a shoulder diameter of 17.5 mm would produce defect less joint with high tensile strength.  相似文献   

17.
The majority of this research has concentrated on developing the self-support friction stir welding(SSFSW) tool which consists of a big concave upper shoulder and a small convex lower shoulder, and procedures for making reliable welds in aluminum hollow extrusion. The 5-mm-thick 6082-T6 aluminum alloy was self-support friction stir welded at a constant tool rotation speed of 800 r/min. The effect of welding speed on microstructure and mechanical properties was investigated. The results of transverse tensile test indicated that the tensile strength of joints increased and the elongation decreased with increasing welding speed. The whole values of microhardness of SSFSW joints increased with increasing welding speed from 10 to 200 mm/min. The defectfree joints were obtained at lower welding speeds and the tensile fracture was located at the heat-affected zone(HAZ) adjacent to the thermo-mechanically affected zone(TMAZ) on the advancing side. The investigation of the flow pattern of the softened metal around the SSFSW tool revealed that the flow pattern of the softened metal was driven by two shoulders and the stir pin. The failure of specimens in tension presented the ductile fracture mode.  相似文献   

18.
This paper aims to demonstrate the successful friction stir welding (FSW) conditions of AM20 magnesium alloy. The maximum yield strength and ultimate tensile strength of weld were found to be 75% and 65% of the base metal strength, respectively. The maximum bending angle of the welded joint was 45°. Observations revealed that less plunging depth, high shoulder diameter, and low tool rotational speed and welding speed give better tensile properties. Maximum temperature was observed at 1?mm away from the tool shoulder toward the advancing side. Micro-hardness variation is found to be decreasing along the depth of the weld, and nugget zone (NZ) gives the higher hardness values when compared with base material (BM) and other welded zones. Needle-like grains of the BM became equiaxed grains due to grain recrystalized by the FSW process. The grains in the NZ were finer than thermo-mechanically affected zone and almost same size of grains observed at bottom, middle, and top of the NZ.  相似文献   

19.
The present study focused on the relationship between primary friction stir welding process parameters and varied types of weld-defect discovered in aluminum 2219-T6 friction stir butt-welds of thick plates, meanwhile, the weld-defect forming mechanisms were investigated. Besides a series of optical metallographic examinations for friction stir butt welds, multiple non-destructive testing methods including X-ray detection, ultrasonic C-scan testing, ultrasonic phased array inspection and fluorescent penetrating fluid inspection were successfully used aiming to examine the shapes and existence locations of different weld-defects. In addition, precipitated Al2Cu phase coarsening particles were found around a ‘kissing-bond’ defect within the weld stirred nugget zone by means of scanning electron microscope and energy dispersive X-ray analysis. On the basis of volume conservation law in material plastic deformation, a simple empirical criterion for estimating the existence of inner material-loss defects was proposed. Defect-free butt joints were obtained after process optimization of friction stir welding for aluminum 2219-T6 plates in 17–20 mm thickness. Process experiments proved that besides of tool rotation speed and travel speed, more other appropriate process parameter variables played important roles at the formation of high-quality friction stir welds, such as tool-shoulder target depth, spindle tilt angle, and fixture clamping conditions on the work-pieces. Furthermore, the nonlinear correlation between weld tensile strengths and weld crack-like root-flaws of different lengths was briefly investigated.  相似文献   

20.
Underwater friction stir welding (underwater FSW) has been demonstrated to be available for the strength improvement of normal FSW joints. In the present study, a 2219 aluminum alloy was underwater friction stir welded at a fixed rotation speed of 800 rpm and various welding speeds ranging from 50 to 200 mm/min in order to clarify the effect of welding speed on the performance of underwater friction stir welded joint. The results revealed that the precipitate deterioration in the thermal mechanically affected zone and the heat affected zone is weakened with the increase of welding speed, leading to a narrowing of softening region and an increase in lowest hardness value. Tensile strength firstly increases with the welding speed but dramatically decreases at the welding speed of 200 mm/min owing to the occurrence of groove defect. During tensile test, the joint welded at a lower welding speed is fractured in the heat affected zone on the retreating side. While at higher welding speed, the defect-free joint is fractured in the thermal mechanically affected zone on the advancing side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号