首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper deals with cutting speed in range 3 m?min‐1 up to 2200 m?min‐1 and its complex impact mainly on chip macroscopic shape, chip microstructure, chip compression, tool wear, tool life and machined surface quality and interprets and compares the effects regarding low, conventional, high and very high speed machining based on the dry turning of carbon steel by sintered carbide coated by titanium nitride and ceramic cutting inserts. The deformation zone response for different cutting speeds at the tool‐chip‐workpiece interfaces and their effect on tool wear were studied. The extensive (so called complete) experiments within wide range of values and large number of measurements were carried out. The formation of secondary chip occurring in high speed turning is reported. Moreover, the paper analyses the total machining time involving tool replacement time in terms of high speed machining regarding the obtained experimental results.  相似文献   

2.
Recent researches in the field of dry machining have indicated that surface texture has the potential to influence tribological conditions. Researchers have studied the application of controlled surface microtextures on cutting tool surfaces to improve machining performance by changing the tribological conditions at the interfaces of tool–chip and tool–work piece. An experiment to study the performance of the microtextured high-speed steel cutting implement within the machining of steel and aluminum samples was performed. Surface textures were introduced using Rockwell hardness tester, Vickers hardness tester, and by scratching with diamond dresser on the face of single point cutting tool. Machining in dry conditions was applied on mild steel (EN3B) and aluminum (AA 6351) samples using lathe machine with microtextured and traditional cutting tool for the constant range of feed, depth of cut, and for varying range of cutting speeds. Measurement of cutting force, cutting temperature, and surface roughness of the work surfaces after machining were made. The results showed reduction in cutting forces and cutting temperature with textured tools in comparison with those of the untextured tool. Chips collected from different samples were studied under a microscope and the results showed that textures created on the tool surface by various methods exhibited variations in chip formation. Cutting tools without texture and with texture were comparatively studied and the outcomes of the experimental study are presented in this paper.  相似文献   

3.
Abstract

As microtechnology and nanotechnology become increasingly important to the needs of society, the need to create devices in engineering materials becomes more apparent. High speed milling has been shown to provide a great deal of promise in creating microstructures and in nanotexturing surfaces in engineering materials. Cutting tool rotation is expected to reach 1 000 000 revolutions per minute (rev min?1) compared with conventional cutting speeds of around 30 000 rev min?1. Rotating the tool this quickly reduces cutting forces, which produces a higher quality of cut so that post- processing is not required. Clearly, strain rates imparted to the workpiece at these speeds are very high and this influences initial chip formation and chip removal mechanisms. High strain rates imparted cause distinct chip formations in engineering materials to occur which are similarly observed in other materials, most notably biological materials such as cancellous bone. Certain soft metals such as aluminium do not machine very well because the material adheres to the cutting tool. However, high strain rates tend to overcome these limitations. This paper examines high strain rate initial chip formation in metals, compares these results to other materials, and shows that an initial chip curl model can be applied to describe high strain rate machining phenomena at the microscale.  相似文献   

4.
5.
Optimizing the Machinability of Free Cutting Steel . Competitive machining requires steels which guarantee a low tool wear, favourable chip form and a high grade surface finish, even unter extreme cutting conditions. Free cutting steels containing special alloying elements which improve the machinability, meet these requirements to a high degree. Machinability depends highly on the chip formation process, in particular size, form and the influence of the built-up edges (BUE). BUE's are formed, depending on the chemical composition, at cutting speeds of v = 100 m/min and more, and have a decisive influence on the tool wear. The influence of the alloying elements Carbon, Sulfur, Manganese, Phosphorus, Nitrogen, Silicon, Aluminium, Lead, Bismuth and Tellurium on the tool life has been studied under working conditions almost similar to praxis. Knowledge of the effect of single combinations of alloying elements allows optimal adaptation of the free machining properties of free-cutting steels to the set requirements.  相似文献   

6.
In order to eradicate the use of mineral based cutting fluid, the machining of Ni–Cr–Co based Nimonic 90 alloy was conducted using environment friendly sustainable techniques. In this work, uncoated tungsten carbide inserts were employed for the machining under dry (untreated and cryogenically treated), MQL, and cryogenic cutting modes. The influence of all these techniques was examined by considering tool wear, surface finish, chip contact length, chip thickness, and chip morphology. It was found that the cryogenically treated tools outperformed the untreated tools at 40 m/min. At cutting speed of 80 m/min, MQL and direct cooling with liquid nitrogen brought down the flank wear by 50% in comparison to dry machining. Similarly at higher cutting speed, MQL and cryogenic cooling techniques provided the significant improvement in terms of nose wear, crater wear area, and chip thickness value. However, both dry and MQL modes outperformed the cryogenic cooling machining in terms of surface roughness value at all the cutting speeds. Overall cryotreated tools was able to provide satisfactory results at lower speed (40 m/min). Whereas both MQL and cryogenic cooling methods provided the significantly improved results at higher cutting speeds (60 and 80 m/min) over dry machining.  相似文献   

7.
In the present work, the machinability of nickel–titanium (Nitinol) shape memory alloy has been discussed. Nitinol is known as a difficult-to-machine alloy due to its high hardness, which requires a large amount of cutting force, resulting in high rate of tool wearing. Therefore, researchers have made an effort to ameliorate the machinability of this material to achieve a finer surface quality. The previous studies found that the cutting speed will remarkably influence the surface properties of machined nickel–titanium alloy in turning process. Tool wear and cutting force are at minimum values in a particular range of cutting speeds so that it leads to diminishing machining barriers such as burr formation and chip-breaking. Lower cutting force and consequently lower temperature and stresses in the machining process improve the mechanical properties as well as reducing hardness, distortion, and residual stress. The machining process was optimized by applying a numerical approach through ANSYS/LS-DYNA R15 software. The obtained results demonstrated the optimum cutting speed in the machining process, which are in good agreement with experiments.  相似文献   

8.
Aluminum alloy 7050 is widely used in the aeronautical industries. However, owing to their highly ductile property, chips created during high-speed machining cannot be naturally broken, and long continuous chips are unavoidably formed, impacting the machining stability and quality of the parts. Because a smaller cutting allowance is required compared with conventional machining operations, the behavior of the chips during reaming operation may be more complex and different from those determined in previous investigations. Therefore, studying the characteristics of chip formation and hole quality during the reaming process is essential to improve the machinability of aluminum alloy 7050. In this study, three different cooling conditions were applied to reaming aluminum alloy 7050-T7451 with polycrystalline diamond (PCD) reamers. The finite element models (FEMs) were established to simulate the chip formation. The macro- and micro-morphologies of chips under the three cooling conditions were compared to analyze the chip behaviors. The diameter, surface roughness, and micro-morphologies of the reamed holes were also analyzed to evaluate the hole quality. The results showed that the chip morphology was strongly influenced by the cutting parameters and cooling strategies. It was found that the desired chip morphologies, satisfactory geometrical accuracy and surface quality during the reaming of aluminum alloy 7050-T7451 could be achieved using internal cooling at a spindle speed of 8 000 r/min and a feed rate of 0.01 mm/z. This study also demonstrates the feasibility of an internal cooling strategy for breaking chips when reaming aluminum alloy 7050-T7451, which opens new possibilities for improving the chip-snarling that occurs during hole machining.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-021-00364-z  相似文献   

9.
Ultrasonic vibration-assisted(UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness.Its principle is to make the tool-workpiece interaction a microscopically non-monotonic process to facilitate chip separation and to reduce machining forces.It can also reduce the deformation zone in a workpiece under machining,thereby improving the surface integrity of a component machined.There are several types of UVA machining processes,differentiated by the directions of the vibrations introduced relative to the cutting direction.Applications of UVA machining to a wide range of workpiece materials have shown that the process can considerably improve machining performance.This paper aims to provide a comprehensive discussion and review about some key aspects of UVA machining such as cutting kinematics and dynamics,effect of workpiece materials and wear of cutting tools,involving a wide range of workpiece materials including metal alloys,ceramics,amorphous and composite materials.Some aspects for further investigation are also outlined at the end.  相似文献   

10.
Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool–chip interface using liquid nitrogen (LN2). This paper presents results on the effect of LN2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75–125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN2 cooling, it has been found that the cutting temperature was reduced by 57–60% and 37–42%; the tool flank wear was reduced by 29–34% and 10–12%; the surface roughness was decreased by 33–40% and 25–29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.  相似文献   

11.
The present investigation focuses on the multiple performance machining characteristics of GFRP composites produced through filament winding. Grey relational analysis was used for the optimization of the machining parameters on machining GFRP composites using carbide (K10) tool. According to the Taguchi quality concept, a L27, 3-level orthogonal array was chosen for the experiments. The machining parameters namely work piece fiber orientation, cutting speed, feed rate, depth of cut and machining time have been optimized based on the multiple performance characteristics including material removal rate, tool wear, surface roughness and specific cutting pressure. Experimental results have shown that machining performance in the composite machining process can be improved effectively by using this approach.  相似文献   

12.
Laser-assisted machining (LAM), as one of the most efficient ways, has been employed to improve the machinability of nickel-based superalloys. However, the conventional LAM process usually used high power laser with large spot size, easily leading to high processing costs and overheating of bulk materials. In this paper, a new approach of selective laser ablation assisted milling (SLA-Mill) process for nickel-based superalloys was proposed, in which low power laser with small spot size was used to selectively ablate the uncut surface in front of the cutting tool, resulting in plentiful surface defects emerging. Such defects would significantly weaken the mechanical strength of difficult-to-cut materials, which was different from the thermal "softening" principle of conventional LAM. Thus, the laser ablation effect with low power and small spot size was first studied. The relationship between process parameters (e.g., laser power, cutting speed and cutting depth) and process characteristics of SLA-Mill (e.g., chip morphology, tool wear and surface integrity) was systematically discussed. Moreover, the chip formation mechanism in the SLA-Mill process was indepth analyzed. Results show that the SLA-Mill process is an effective approach for enhancing the machinability of nickel-based superalloys. The resultant cutting force has a reduction of about 30% at laser power of 60 W, cutting speed of 90 m/min, and cutting depth of 0.1 mm. Furthermore, the chip formation, tool wear, and surface integrity have improved significantly. In general, this paper provides a new route for the application of LAM technology.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-021-00384-9  相似文献   

13.
Metal Cutting of Hard Alloys – Turning and Grinding. Part II: Turning of Hard Alloys Turning tests were carried out on selected hard alloys on iron (FeCr12C2.1, FeCr13Nb9MoTiC2.3, FeCr14Mo5WVC4.2) and cobalt basis (CoCr29W5C1.3) in a cutting speed range of between vc = m/min and 180 m/min. Polycrystalline cubic boron nitride (PCBN) turned out to be a suitable tool material. Subsequent examinations focused on evaluating the mechanisms of chip formation, cutting tool wear and surface integrity of the workpiece. During turning of hard alloys the formation of chips is primarily influenced by the ductility and fracture toughness of the work material. While a ductile matrix enables the formation of highly deformable chips, the chips stemming from martensitically hardened alloys show low deformation. As the cutting depth increases shear and segmented chips are chiefly produced. Type and arrangement of the hard phases play a significant role. Adhesion is the main wear mechanism impacting the cutting face of the tool. Particularly, strong adhesion effects will arise during the machining of the work hardening alloy on cobalt basis. A high cobalt content of the metallic bonding phase of the PCBN cutting tool appears to be a disadvantage with this type of work material. When machining alloys on iron basis adhesion is promoted by the mechanical linking of alloy-specific hard phases to the cutting material binder. Abrasion primarily acts on the flank. The hard carbides of the work material produce typical grooves in the cutting edge zone of the tool. The flank wear increases as the carbide content goes up. As the cutting speed rises the tool wear ascertained passes through a minimum. Whereas the formation of built-up cutting edges predominates at lower speeds, a thermal softening of the PCBN binder takes place and is dominating at high cutting speeds. The location of the wear minimum depends not only on the cutting temperature but also on the strain hardening capability of the metal matrix. Raising the cutting speed will cause the cutting force to continuously reduce. The highest cutting forces are found for the Co-based alloy. The passive forces develop in line with cutting tool wear and vary with content and hardness of the hard phases involved. The selected process parameters also affect the surface near zone. With low cutting speeds and process temperatures the surface is mainly stressed mechanically. Carbides break or detach from the surrounding matrix. If the cutting speed and process temperature are increased the eutectic carbides (M7C3) are deformed together with the metal matrix. Microhardness profiles are indicative of near-surface strain-hardened zones after cutting of the Co-based alloy. Fe-based matrices do not show hardness changes worth mentioning. Although there are no new hardened zones noticeable even at maximum cutting speed, the matrix is nevertheless influenced thermally so that residual stresses will develop in the machined surface layer. In the lower cutting speed range the surface quality is characterized by flakes and material squeezing (Co-based alloy) and by spalling (Fe-based alloy). Only if the cutting speed is raised, a minor roughness is detected due to a potential deformation of eutectic hard phases.  相似文献   

14.
SiCp/Al composites have been widely used in many fields such as aerospace, automobile, advanced weapon system, etc. But this kind of material, especially with high volume fraction, is difficult to machine due to the reinforced particles existing in matrix, which has limited its further application. Rotary ultrasonic machining (RUM) has many excellent features and it has never been used to machine SiCp/Al composites. In order to improve the machinability and application of SiCp/Al composites, the rotary ultrasonic face grinding experiments of SiCp/Al composites reinforced with 45% volume SiC particles were carried out to investigate cutting force, surface quality, tool wear, and abrasive chip shapes. The experimental results indicate that ultrasonic vibration could reduce cutting force, surface roughness, surface defects, and increase plastic removal ratio. The cutting force could be lowered by an average of 13.86% and the surface roughness could be lowered by an average of 11.53%. The examined results of tool wear patterns suggest that tool wear is mainly caused by grain breakage and grain fall-off. Grinding wheel blockage and grinding burn were not observed in machining process.  相似文献   

15.
M Ramulu 《Sadhana》1997,22(3):449-472
The current focus of manufacturing research on fibre-reinforced plastics (FRP) is composed of the search for efficient processing techniques capable of providing high quality machined surfaces. Very limited work has been performed to identify the influence of manufacturing processes like edge-trimming and drilling on material performance. Recent reports suggest that process-induced damage may affect the mechanical behaviour of FRP materials. Therefore an experimental study of orthogonal cutting was conducted on the edge trimming of unidirectional and multi-directional graphite/epoxy composites with polycrystalline diamond tools. The effects of tool geometry and operating conditions were evaluated from an analysis of chip formation, cutting force, and machined surface topography. All aspects of material removal were found to be primarily dependent on fibre orientation. Discontinuous chip formation was noted throughout this study, regardless of machining parameters. Three distinct mechanisms in the edge trimming of fibre-reinforced composite material including a combination of cutting, shearing, and fracture along the fibre/matrix interface were observed. An investigation conducted on the compression, flexural and impact strength of graphite/epoxy composites machined by both traditional and non-traditional techniques, confirms that manufacturing characteristics may not only affect bulk properties but also influence the initiation and propagation of failure.  相似文献   

16.
精密硬态切削过程中刀具与工件发生剧烈的热力耦合作用,使得一定条件下已加工表面出现变质层.为揭示变质层的生成机制,研究了PCBN刀具硬态切削淬硬模具钢Cr12MoV的工艺过程.通过实验手段揭示了表面变质层生成机理,得到了不同刀具磨损情况下变质层中白层厚度的变化规律;采用MATLAB数学分析软件构建了已加工表面温度场分布曲线,预测了特定切削条件下变质层中的白层厚度.实验验证结果表明:该模型预测精度较高,可以为精密硬态切削加工过程中工件加工质量的控制提供依据.  相似文献   

17.
The nickel-based superalloy GH4169 is an important material for high temperature applications in the aerospace industry. However, due to its poor machinability, GH4169 is hard to be cut and generates saw-tooth chips during high speed machining, which could significantly affect the dynamic cutting force, cutting temperature fluctuation, tool life, and the surface integrity of the parts. In this paper, the saw-tooth chip formation mechanism of superalloy GH4169 was investigated by the elasto-viscoplastic finite element method (FEM). Using the finite element software of ABAQUS/Explicit, the deformation of the part during high speed machining was simulated. The effective plastic strain, the temperature field, the stress distribution, and the cutting force were analyzed to determine the influence of the cutting parameters on the saw-tooth chip formation. The study on broaching performance has great effect on selecting suitable machining parameters and improving tool life.  相似文献   

18.
基于径向基函数神经网络的CFRP切削力预测   总被引:1,自引:0,他引:1       下载免费PDF全文
碳纤维增强树脂基复合材料(CFRP)加工中基体相极易因切削力过大而破坏,并迅速扩展至加工表面以下而形成损伤。为了准确预测其切削力并加以控制,基于实验切削力数据建立了人工神经网络切削力模型,预测了不同纤维角度、切削深度和刀具角度下加工CFRP的切削力变化规律,并完成了不同刀具角度及切削参数下典型纤维角度CFRP单向板的直角切削实验,对预测模型进行验证,其预测精度可达85%以上。结合成屑过程在线显微观测结果可知:纤维角度是影响CFRP切削力的主要因素, 0°~135°范围内,切屑形成方式为切断型和开裂后弯断型;切削力随纤维角度增大呈先减小后增大的趋势, 135°时最大,随切削深度增加,切削力总体呈增大趋势。   相似文献   

19.
This paper presents an analytical approach to describe the cutting forces in 1ST A deep hole machining processes in the time domain. The method takes into account the effect of different machining conditions. Since the cutting velocities employed in BTA deep hole machining process are relatively high, and since small chips are produced due to the presence of tool chip breakers, the analysis is developed on the basis of the thin shear plane model.

The cutting velocity is a linear function of radius and the rake angle. Cutting is different in the two regions of the cutting tool, so the total cutting force acting on the cutting tool is determined by integrating the force on a small incremental thickness of the cutting tool. This approach, to predict the value of the cutting forces without resorting to any empirical techniques, clearly illustrates the effect of various system parameters on the machining process.

The resultant force system on a new BTA cutting tool consists of an axial force and torque. But with the increase in the number of holes bored, not only does the cutting profile deteriorate, but the wear pads do too. The resultant force system will then consist of three force components and a torque, due to the fact that the forces are not balanced at the wear pads. Under such conditions, the cutting force equations derived in the latter half of the paper, coupled with the properties of the randomly varying component, can be used as the forcing function on the machine tool to evaluate not only the response but also the regions of stability and instability during the machining.  相似文献   

20.
High-speed milling (HSM) has many advantages over conventional machining. Among these advantages, the lower cutting force associated with the machining process is of particular significance for Nitinol alloys because their machined surfaces show less strain hardening. In this article, a systematic study has been carried out to investigate the machining characteristics of a Ni50.6Ti49.4 alloy in HSM. The effects of cutting speed, feed rate, and depth of cut on machined surface characteristics and tool wear are studied. It is found that an increase in cutting speed has resulted in a better surface finish and less work hardening. This is attributed to the reduction of chip cross-sectional area or chip thickness, which thus leads to a lower cutting force or load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号