首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, different amounts (0.5–5 wt%) of a sol gel-derived zinc-containing nano-bioactive glass (NBG-Zn) powder were added to biphasic calcium phosphate (BCP). The mixtures were sintered at 1,100–1,300 °C and physical characteristics, mechanical properties, phase composition and morphology of them were studied. The samples were also soaked in human blood plasma for 15 days to evaluate variations in their surface morphologies. Rat calvarium-derived osteoblastic cells were seeded on tops of various samples and cell adhesion, proliferation, and alkaline phosphatase activity were evaluated at different culturing periods. The maximum bending strength (62 MPa) was obtained for BCP containing 0.5 wt% NBG-Zn at temperature 1,200 °C. This value was approximately 80 % higher than that of pure BCP. The bending strength failed when both sintering temperature and amount of added NBG-Zn increased. At 1,100 °C, NBG-Zn additive did not change the phase composition of BCP. At temperatures 1,200 and 1,300 °C, both alpha-tricalcium calcium phosphate (α-TCP) and beta-tricalcium phosphate (β-TCP and) phases were detected. However, adding higher amount of NBG-Zn to BCP resulted in elevation of β-TCP at 1,200 °C and progression of α-TCP at 1,300 °C. Based on the microscopic observations, adding 0.5 wt% NBG-Zn to BCP led to disappearance of grain boundaries, reduction of micropores and formation of a monolithic microstructure. No calcium phosphate precipitation was observed on sample surfaces after soaking in blood plasma, but some pores were produced by phase dissolution. The size and volume of these pores were directly proportional to NBG-Zn content. Based on the cell studies, both BCP and NBG-Zn-added BCP samples supported attachment and proliferation of osteoblasts, but higher alkaline phosphatase enzyme was synthesized within the cells cultured on NBG-Zn-added BCP. Overall, biphasic calcium phosphate materials with improved mechanical and biological properties can be produced by using small quantity of zinc-containing bioactive glass particles.  相似文献   

2.
Undoped and (Co, Ag) co-doped ZnO nanostructure powders are synthesized by chemical precipitation method without using any capping agent and annealed in air ambient at 500 °C for 1 h. Here, the Ag concentration is fixed at 5 mol% and Co concentration is increased from 0 to 5 mol%. The X-ray diffraction studies reveal that undoped and doped ZnO powders consist of pure hexagonal structure and nano-sized crystallites. The novel Raman peak at 530 cm?1 has corroborated with the Co doped ZnO nanoparticles. Moreover, the PL studies reveal that as the Co doping concentration increases and it enters into ZnO lattice as substitutional dopant, it leads to the increase of oxygen vacancies (Vo) and zinc interstitials (Zni). From the magnetization measurements, it is noticed that the co-doped ZnO nanostructures exhibit considerably robust ferromagnetism i.e. 4.29 emu g?1 even at room temperature. These (Co, Ag) co-doped ZnO nanopowders can be used in the fabrication of spintronic and optoelectronic device applications.  相似文献   

3.
The spark plasma sintering (SPS) of Eu3+-doped Y3NbO7 niobate phase was investigated to obtain dense ceramics. Although SPS allowed obtaining high-density ceramics, decomposition of the niobate phase occurred at high temperature and was promoted by the SPS process, which limited its use as an optical material. The niobate phase has been prepared by two synthesis methods: a solid-state route and a sol–gel method. The purity, density and microstructure of the dense ceramics were analyzed after spark plasma sintering. Translucent ceramics were only obtained from sol–gel powders after SPS at 1600 °C during 20 min with a heating rate of 5 °C/min. The sintering study of the pure niobate phase showed that during SPS process and especially in the presence of the high electrical field the Y3NbO7 phase is metastable at 1600 °C. A decomposition of the niobate compound is clearly demonstrated by luminescence measurements when high heating rates were used.  相似文献   

4.
This work reports on an efficient powder metallurgy method for the synthesis of NiTi alloys, involving mechanical activation of pre-alloyed NiTi2 and elemental Ni powders (NiTi2–Ni) followed by a press-and-sinter step. The idea is to take advantage of the brittle nature of NiTi2 to promote a better efficiency of the mechanical activation process. The conventional mechanical activation route using elemental Ti and Ni powders (Ti–Ni) was also used for comparative purposes. Starting with (NiTi2–Ni) powder mixtures resulted in the formation of a predominant amorphous structure after mechanical activation at 300 rpm for 2 h. A sintered specimen consisting mainly of NiTi phase was obtained after vacuum sintering at 1050 °C for 0.5 h. The produced NiTi phase exhibited the martensitic transformation behavior. Using elemental Ti powders instead of pre-alloyed NiTi2 powders, the structural homogenization of the synthesized NiTi alloys was delayed. Performing the mechanical activation at 300 rpm for the (Ti–Ni) powder mixtures gave rise to the formation of composite particles consisting in dense areas of alternate fine layers of Ni and Ti. However, no significant structural modification was observed even after 16 h of mechanical activation. Only after vacuum sintering at 1050 °C for 6 h, the NiTi phase was observed to be the predominant phase. The higher reactivity of the mechanically activated (NiTi2–Ni) powder particles can explain the different sintering behavior of those powders compared with the mechanically activated (Ti–Ni) powders. It is demonstrated that this innovative approach allows an effective time reduction in the mechanical activation and of the vacuum sintering step.  相似文献   

5.
The effects of Bi4Ti3O12 (BIT) on phase purity and dielectric properties of BaTiO3 (BT) ceramics have been investigated. Results show that BT samples doped with 1–3 mol% BIT adopt a single phase. However, secondary phase Bi2Ti2O7 is observed when BIT content exceeds 3 mol%. Tetragonality and the Curie temperature (T C) firstly increase and then decreases with an increase in BIT content. The 3 mol% BIT-doped BT ceramic sintered at 1,250 °C exhibits good dielectric properties of εr = 2,692, tan δ = 0.0152, ρv = 5.8 × 1012 Ω cm, and the variation of dielectric constant as compared with that at room temperature is about ?20 % at ?55 °C and less than 11 % at 150 °C. It is found that the addition of calcium borosilicate glass (CBS) in BT-BIT ceramics can effectively lower the sintering temperature from 1,250 to 1,050 °C and further enhance the capacitance temperature stability. The permittivity decreases with an increase in CBS content from 1 to 10 wt%. Secondary phase BaBi4Ti4O15 exists in the CBS doped BT-3BIT systems. All of CBS doped samples satisfy the X8R specification. Typically, the sample with 3 wt% CBS has εr = 1,789, tan δ = 0.0115, ρv = 9.67 × 1012 Ω cm. The variation of permittivity as compared with that at room temperature is about ?12 % at ?55 °C and less than ± 11 % at 150 °C. The as-prepared materials have great potential as EIA X8R-type multilayer ceramic capacitors.  相似文献   

6.
In this study, preparation of Si and Cd co doped (5 mol% Si and 5–20 mol% Cd) TiO2 dip-coated thin films on glass substrates via sol–gel process have been investigated. The samples were characterized by X-ray diffraction (XRD) and Scanning electron microscopy analysis after heat treatments. XRD results suggested that adding dopants has a great effect on crystallinity and particle size of TiO2. Titania rutile phase formation was inhibited by Si4+ and promoted by Cd2+ doping. But the effect of Cd doped appeared at high concentration. Accordingly, the thin films showed various water contact angles. The water contact angles changed from 69.0° to 9.6° by changing the content of Cd doped.  相似文献   

7.
The aims of this study were to investigate the effects of Sr- and Mn-doped ions on the sintering behaviors, microstructure and mechanical properties of the bioceramics processed by single- and two-step microwave sintering (MWSSS and MWTSS). Nano-sized calcium hydroxyapatite powders doped with Sr and Mn ions, obtained by modified precipitation synthesis, were isostatically pressed at 400 MPa and processed by MWSSS and MWTSS at different temperatures. In all cases during the sintering, the doped HAP powders turned into biphasic mixtures of HAP and TCP, but the amount of TCP was certainly lower in the case of MWTSS. It was shown that the doped ions significantly affected: density, microstructure, grain size, porosity, hardness, and fracture toughness of the processed bioceramics. Two-step microwave sintering was successfully applied for the processing of HAP/TCP bioceramics doped with strontium and manganese ions. Both two-step microwave sintered doped bioceramics had similar and high hardness values, but the strontium-substituted bioceramic material certainly had higher fracture toughness (1.54 MPam1/2), with an average grain size of 195 nm. Based on the results presented in this paper, it was concluded that the two-step microwave sintered strontium-doped bioceramics could be suitable materials in the bone regenerative field.  相似文献   

8.
Lead magnesium niobate–lead titanate [Pb(Mg1/3Nb2/3)O3–PbTiO3] powders doped with different mole % of CeO2 were prepared by a modified columbite route with compositions corresponding to morphotropic phase boundary (MPB) region. These powders were calcined at 800 °C for 4 h and circular test specimens were prepared by uniaxial pressing. The specimens were sintered at 1150 °C/2 h, poled at 2 kV/mm d.c. voltage and were characterized for dielectric, ferroelectric and piezoelectric properties. It was observed that the piezoelectric and ferroelectric properties initially increase up to 2 mol% of ceria addition and then decrease with increase in ceria concentration. The diffusivity of the dielectric curves increases with increase in ceria concentration. The decrease in Curie temperature was observed from 173 °C corresponding to pure PMN–PT to a temperature of 138 °C for 10 mol% of ceria addition.  相似文献   

9.
Ce- and/or Y-doped zirconia nanopowders having average particle sizes ranging 12–18 nm have been synthesized by a technique based on mechanochemical processing (MCP). Despite their small particle size, the powders had excellent compactibility with green densities exceeding 50% achieved under a moderate uniaxial pressure of 150 MPa. Nearly fully dense ceramics having grain sizes of around 100 nm were successfully produced from these powders by spark plasma sintering (SPS) at temperatures of 1,050–1,150 °C for 5 min under pressures of 50–80 MPa; these temperatures and pressures are considerably lower than those required for achieving near full density with conventional nanopowders. Hardness and fracture-toughness measurements showed that the ceramics prepared by SPS had superior mechanical properties to those prepared by conventional pressureless sintering. It is argued that the high sinterability of the MCP nanopowders is ascribed to their ability to form uniform powder compacts under relatively low pressure, and that that ability in turn originates in two features of the MCP powders: absence of hard agglomeration and pseudo-spherical particle morphology.  相似文献   

10.
Nd-doped barium titanates were successfully synthesized via a hydrothermal route. The as-prepared barium titanate was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), fourier transformation infrared spectroscopy (FTIR), and Vis–NIR spectroscopy respectively. The results show that pure and Nd-doped barium titanate powders have cubic perovskite structure. After sintering at a temperature of 1,250 °C for 2 h, the phase compositions of all barium titanate are tetragonal phase structure. Vis–NIR spectra well confirmed that Nd3+ have been doped into barium titanate. The particle diameters of Nd-doped barium titanate powders and ceramics become samller with the increase of Nd3+ content. When Nd/Ba molar ratio is 0.02, the dielectric loss (0.0008) of the powder measured at 1 MHz and room temperature dramatically decreases by 99 % comparing with pure barium titanate (0.083) and shows frequency independence with the frequency increasing from 40 Hz to 1 MHz. The dielectric constant and dielectric loss are 436 and 0.09 after sintering. The Nd-doped BaTiO3 show an improvement in the dielectric quality which possess a decreased sensitivity to frequency for both the dielectric constant and dielectric loss. Such improvements are of potential importance for high energy density and low loss.  相似文献   

11.
Zinc-substituted hydroxyapatite (Zn-HA) powders were prepared by hydrothermal method using Ca(NO3)2, (NH4)3PO4 and Zn(NO3)2 as reagents. X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM) were used to characterize the crystalline phase, microstructure, chemical composition, morphology and thermal stability of Zn-HA. The results show that the substitution content of zinc (Zn) in Zn-HA powders prepared in NaOH solution is higher than that prepared in NH3 solution, and is lower than that of the corresponding amount of starting materials. The substitution of the Zn ion for calcium ion causes a lower crystallinity of Zn-HA and changes the lattice parameters of Zn-HA, since the ionic radius is smaller in Zn2+ (0.074 nm) than in Ca2+ (0.099 nm). Furthermore, the substitution of the Zn ions restrains the growth of Zn-HA crystal and decreases the thermal stability of Zn-HA. Zn-HA powder prepared in NH3 solution starts to decompose at 800 °C when the Zn fraction increases to 15 mol%, while that prepared in NaOH solution start to decompose at 5 mol% Zn. The substitution content of Zn significantly influences the thermal stability, microstructure and morphology of Zn-HA.  相似文献   

12.
The energy-storage properties of SrTiO3-doped (15, 20, 25, and 30 mol%) 0.80Bi1/2Na1/2TiO3–0.20Bi1/2K1/2TiO3 lead-free antiferroelectric ceramics were investigated by two-step sintering method. The ceramics with higher SrTiO3 content had smaller grain sizes and a more homogeneous distribution. About 25 mol% SrTiO3 doping induced antiferroelectric properties, showing a typical double hysteresis loops, accompanied by a large energy density. The first sintering temperature of the ceramics had main impact on the relative density, and the high relative density possessed large external breakdown strength. The optimum electrical performances with a low remanent polarization (Pr = 1.9 μC/cm2), a low coercive field (Ec = 1.7 kV/cm) and a large energy density (W = 0.97 J/cm3) at 10 Hz were obtained at 1,190 °C for a SrTiO3 content of 25 mol%.  相似文献   

13.
Innovative chemical methods are capable of fabricating nanoscale tungsten oxide compounds doped with various rare-earth elements with high purity and homogeneity, which can be processed under hydrogen into nanostructured oxide-dispersed tungsten composite powders having several potential applications. However, hydrogen reduction of doped tungsten oxide compounds is rather complex, affecting the morphology and composition of the final powder. In this study, we have investigated the reduction of tungstic acid in the presence of Y and we provide the experimental evidence that Y2O3 can be separated from Y-doped tungstic acid via hydrogen reduction to produce Y2O3-W powders. The processed powders were further consolidated by spark plasma sintering at different temperatures and holding times at 75 MPa pressure and characterized. The optimized SPS conditions suggest sintering at 1400 °C for 3 min holding time to achieve higher density composites with an optimum finer grain size (3 µm) and a hardness value up to 420 H V. Major grain growth takes place at temperatures above 1300 °C during sintering. From the density values obtained, it is recommend to apply higher pressure before 900 °C to obtain maximum density. Oxides inclusions present in the matrix were identified as Y2O3·3WO3 and Y2O3·WO3 during high resolution microscopic investigations.  相似文献   

14.
This paper investigates the effect of K(1.94)Zn(1.06)Ta(5.19)O(15) (KZT) addition on the sintering behavior and piezoelectric properties in lead free piezoelectric ceramics of (K(0.5)Na(0.5))NbO(3) (KNN). The apparent density of sintered KNN ceramics was increased with KZT addition, and a relative density of above 96.3% was obtained with the doping of over 0.5 mol% KZT. The maximum dielectric and piezoelectric properties of epsilon(T)(3)/epsilon(0) = 590, d(33) = 126 pC/N, k(p) = 0.42, and P(r) = 18 microC/cm(2) were obtained from 0.5 mol% KZT-doped KNN ceramics. A small amount of KZT (about 0.5 mol%) was effective for improving the sintering behavior and piezoelectric properties, but KZT addition exceeding 1.0 mol% was effective only for densification. A small amount of KZT was effective for densification of KNN ceramics by promoting K(5.75)Nb(10.8)O(30) liquid phase formation. However, even though KNN with 1.0 to approximately -2.0 mol% KZT had a relative density of >98.5%, the piezoelectric properties were inferior to those of 0.5 mol% KZT-doped KNN, presumably due to the smaller grain size and excess liquid phase of the KNN ceramics doped with higher amounts of KZT. It is believed that a small amount of KZT could be one of the suitable sintering aids to obtain highly dense KNN based piezoelectric.  相似文献   

15.
High-energy ball milling process has been applied to gadolinia-doped ceria system. The sinterability of gadolinia-doped ceria was significantly enhanced by the high-energy ball milling process. A comparison was also made of the sintering behavior of milled powders doped with gallia as a sintering aid. Dense Ce0.8Gd0.2O1.9 ceramics with 97% of the theoretical density could be obtained by sintering the milled mixture with 0.5 mol% Ga2O3 addition at 1,250 °C for 5 h.  相似文献   

16.
Medium-temperature sintering X8R ceramics were fabricated based on BaTiO3-based ceramics with Bi2O3 additives. The effects of sintering aids Bi2O3 on crystalline structure and electrical properties of BaTiO3-based ceramics were investigated. The sinterability of BaTiO3 ceramics was significantly improved by adding Bi2O3, whose densification sintering temperature reduced from 1,260 to 1,130 °C. However, the dielectric constant (ε) of BaTiO3-based ceramics doped with Bi2O3 was decreased dramatically. Both low ε phase Bi4Ti3O12 and the decrease of the tetragonality (c/a ratio), which are demonstrated by XRD pattern, are resulted in the decrease of ε. The ε of samples doped with 5.5 wt% Bi2O3 was higher than the other doped samples. The substitution of Bi3+ for the Ba2+ in BaTiO3 resulted in the increase of electrovalence (from +2 to +3) of A-site ion, so the attractive force between A and B (Ti4+) sites becomes stronger. Thus Ti4+’s polarization enhances, then ε was increased to some extent. The X8R BaTiO3-based ceramics could be sintered at as low as 1,130 °C by doping 5.5 wt% Bi2O3 additives into the BaTiO3-based ceramics, with a ε greater than 2,430 at 25 °C, dielectric loss lower than 1.3 % and temperature coefficient of capacitance <±15 % (?55–150 °C).  相似文献   

17.
The ZnO-based linear resistance ceramics were fabricated from ZnO–Al2O3–MgO–NiO at 1,340 °C. The effect of the different doping amounts of NiO on the microstructure and electrical properties were investigated in detail. Appropriate amount of NiO addition can reduces the nonlinear property and improves the resistance temperature coefficient of the ZnO-based linear resistance ceramics obviously. The samples with the NiO concentration of 15 mol% possess an energy density of 496 J/cm3 and a resistance temperature coefficient 1.15 × 10?4/°C, which are improved by 10 and 79 %, respectively. Moreover, the nonlinear coefficient of voltage decrease to 1.14, decreased by 11 % and the resistivity reaches to 43.53 Ω cm, increased by 76 %.  相似文献   

18.
In this work, microstructure characteristics, dielectric, piezoelectric and ferroelectric properties of lead-free (K0.4425Na0.52Li0.0375)(Nb0.87Ta0.06Sb0.07)O3 (KNLNST) doped with 1?mol% copper oxide (CuO) piezoelectric ceramics prepared by a conventional solid-state reaction route are investigated with an emphasis on the influence of sintering temperature. The introduction of CuO could significantly improve the sinterability of KNLNST ceramics. It is found that the tetragonality of the ceramics increases with raising sintering temperature. A dense microstructure with increased grains is developed, probably due to liquid-phase sintering. Both the piezoelectric constant d 33 and planar electromechanical coupling k p increase with increasing relative density and grain size. The Curie temperature T C values increase slightly when the sintering temperature is increased. In addition, the KNLNST ceramics doped with 1?mol% CuO show obvious dielectric relaxor characteristics, and the relaxor behavior of ceramics is strengthened by increasing the sintering temperature. The improved piezoelectric and dielectric properties of d 33?=?241?pC/N, k p?=?0.437, dielectric loss tanδ?=?0.0087, mechanical quality factor Q m?=?138, dielectric constant ε r?=?1,304 can be obtained for specimens sintered at 1,080?°C for 3?h.  相似文献   

19.
Nanocrystalline powders of tin-doped barium titanate with different concentrations of tin have been synthesized by a combination of solid state reaction and high-energy ball milling. The average particle size of the milled powders as determined from TEM analysis was about 5·96 nm. Analysis of all the milled powders using X-ray diffraction method showed single phase perovskite structure. The density variation of the ceramics with sintering temperature has been studied by sintering the samples at different temperatures. Density variation results show that 1350°C is the optimum sintering temperature for tin-doped barium titanate ceramics. SEM micrographs show high density and increasing trend of grain size with increasing content of Sn. The ferroelectricity decreases with increasing concentration of Sn. The electromechanical coupling coefficient also decreases with increasing Sn content corroborating decreasing trend of ferroelectricity. The bipolar strain curves show piezoelectric properties of the prepared ceramics.  相似文献   

20.
Ca–Al–B–Si–O glass/Al2O3 composites were prepared based on the borosilicate glass powders (D50 = 2.84) and Al2O3 ceramic powders (D50 = 3.26), and the sintering, densification, crystallization of samples were investigated. The shrinkage of sample starts to have a sharp increase at 600 °C. The shrinkage of sample starts to have a further rapid increase after the glass softening temperature of about 713 °C. Glass/Al2O3 composites can be sintered at 875 °C/15 min and exhibit better properties of a relative density of 98.4 %, a λ value of 2.89 W/mK, a ε r value of 7.82 and a tan δ value of 5.3 × 10?4. The interface between glass and Al2O3 grains and the interface between anorthite and glass phase depicts a good compatibility according to transmission electron microcopy test. It is the low sintering temperature, high density and good compatibility with Ag electrodes that, guarantee borosilicate glass/Al2O3 composites suitable for low temperature co-fired ceramic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号