首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P-Channel silicon MOS Halltrons with a different thickness of the oxide under the gate are studied. The measurements are performed in steady-state conditions at room temperature and in a weak magnetic field. Some conclusions about the surface conductivity, Hall mobility and Hall coefficient of carriers in the channel are given. The magneto-electrical characteristics are presented as a function of space charge, surface potential and free charge at the surface of the semiconductor. An explanation of the decrease of the surface conductivity in the nonlinear part of the curve of surface conductivity vs gate voltage is proposed.  相似文献   

2.
A detailed analytical calculation of the photoelectric quantum yield in Schottky diodes is presented. The transport of carriers in the surface space charge region is treated explicitly, taking account of photogeneration, diffusion and drift in the non-uniform electric field. Boundary conditions at the interface are expressed in terms of surface recombination velocity and emission velocity of excess carriers into the metal.It is shown that the metal-semiconductor interface strongly affects the collection efficiency of short wavelength generated electron-hole pairs. This effect basically originates in the emission flux of majority carriers into the metal.Current, charge carriers distributions and quantum yields are computed using the data of AuCdTe Schottky barriers.  相似文献   

3.
《Organic Electronics》2003,4(1):33-37
In conventional field-effect transistors, the extracted mobility does not take into account the distribution of charge carriers. However, in disordered organic field-effect transistors, the local charge carrier mobility decreases from the semiconductor/insulator interface into the bulk, due to its dependence on the charge carrier density. It is demonstrated that the conventional field-effect mobility is a good approximation for the local mobility of the charge carriers at the interface.  相似文献   

4.
The charge transportation in poly(3‐butylthiophene) (P3BT)/insulating polymer composites is studied both microscopically and macroscopically. The increased mobility of free charge carriers, in particular hole mobility, contributes to the enhanced electrical conductivity of this semiconductor/insulator composite. The conductivity origin of the composite, as revealed by conductive‐atomic force microscopy (C‐AFM), comes mainly from the P3BT network, whose carrier mobility has been improved as a result of reduced activation energy for charge transportation upon forming an interface with the insulating matrix. Both the huge interfacial area and interconnected conductive component are morphologically required for the enhanced electrical property of the composite. An increased size of the P3BT domains, which correspondingly reduces the interfacial area between the two components, ruins the enhancement. This study clarifies the mechanism of the higher electrical properties achieved in a semiconducting polymer upon blending with an insulating polymer, which will further promote the development of these low‐cost, easily processable, and environmentally stable composites.  相似文献   

5.
The doping of semiconductor materials is a fundamental part of modern technology, but the classical approaches have in many cases reached their limits both in regard to achievable charge carrier density as well as mobility. Modulation doping, a mechanism that exploits the energy band alignment at an interface between two materials to induce free charge carriers in one of them, is shown to circumvent the mobility restriction. Due to an alignment of doping limits by intrinsic defects, however, the carrier density limit cannot be lifted using this approach. Here, a novel doping strategy using defects in a wide bandgap material to dope the surface of a second semiconductor layer of dissimilar nature is presented. It is shown that by depositing an insulator on a semiconductor material, the conductivity of the layer stack can be increased by 7 orders of magnitude, without the necessity of high‐temperature processes or epitaxial growth. This approach has the potential to circumvent limits to both carrier mobility and density, opening up new possibilities in semiconductor device fabrication, particularly for the emerging field of oxide thin film electronics.  相似文献   

6.
Electrochemical surface charge‐induced variation of physical properties in interface‐dominated bulk materials is a rapidly emerging field in material science. The recently developed three‐dimensional bulk nanographene (3D‐BNG) macro‐assemblies with ultra‐high surface area and chemical inertness offer new opportunities in this area. Here, the electronic transport in centimeter‐sized 3D‐BNG monoliths can be dynamically controlled via electrochemically induced surface charge density. Specifically, a fully reversible variation in macroscopic conductance up to several hundred percent is observed with ≤1 V applied gate potential. The observed conductivity change can be explained in the light of the electrochemically‐induced accumulation or depletion of charge carriers in combination with a large variation in the carrier mobility; the latter, being highly affected by the defect density modulations resulting from the interfacial charge injection, sharply decreases with an increase in defect concentrations. The phenomenon presented in this study is believed to open the door to novel applications of bulk graphene materials such as, for example, low voltage and high power tunable resistors.  相似文献   

7.
The effect of oxidation at room temperature on the thermoelectric properties of PbSe/KCl (001) thin films prepared by thermal evaporation was investigated. The dependences of the electrical conductivity, the Hall coefficient, charge carrier mobility, and thermopower on the PbSe layer thickness (d=4–200 nm) were obtained. An inversion of the sign of the dominant carriers from n to p at d∼80 nm was observed under decreasing d. The d dependences of the thermoelectric properties were interpreted, taking into consideration the oxidation processes at the film/air interface within the framework of models considering both n-type and p-type carriers.  相似文献   

8.
Enhancing the device performance of single crystal organic field effect transistors (OFETs) requires both optimized engineering of efficient injection of the carriers through the contact and improvement of the dielectric interface for reduction of traps and scattering centers. Since the accumulation and flow of charge carriers in operating organic FETs takes place in the first few layers of the semiconductor next to the dielectric, the mobility can be easily degraded by surface roughness, charge traps, and foreign molecules at the interface. Here, a novel structure for high‐performance rubrene OFETs is demonstrated that uses graphene and hexagonal boron nitride (hBN) as the contacting electrodes and gate dielectric layer, respectively. These hetero‐stacked OFETs are fabricated by lithography‐free dry‐transfer method that allows the transfer of graphene and hBN on top of an organic single crystal, forming atomically sharp interfaces and efficient charge carrier‐injection electrodes without damage or contamination. The resulting heterostructured OFETs exhibit both high mobility and low operating gate voltage, opening up new strategy to make high‐performance OFETs and great potential for flexible electronics.  相似文献   

9.
The electrical characteristics of Schottky barriers formed on n-type cadmium diphosphide are studied. It is established that the space-charge region at the metal-semiconductor interface represents in fact a Schottky layer formed owing to a high concentration of deep-level centers. The charge transport in the conducting direction for these structures is related to the above-barrier emission of electrons and is consistent with the diffusion theory for one or two types of charge carriers. The high concentration of ionized centers in the space-charge region gives rise to the tunneling mechanism of breakdown in the blocking direction. The frequency dependences of the complex conductance are governed by the exchange of charge carriers between the conduction band and donors that specify the conductivity type of the material and also by the recharing of the centers with a large depth of levels. Good agreement between the reported results and the theory is obtained.  相似文献   

10.
The effect of annealing blends of poly(2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylenevinylene) (MDMO‐PPV) and a poly(cyanoether phenylenevinylene) (PCNEPV) on the photoconductivity is studied. Charge carriers are generated by pulsed‐laser excitation and their mobility and decay kinetics are monitored using time‐resolved microwave conductivity (TRMC) measurements. Photoexcitation leads to the formation of an exciton, which can undergo charge separation at an interface between the electron‐donating MDMO‐PPV and the electron‐accepting PCNEPV. The electrons and holes formed in this way must escape from each other to contribute to the photoconductivity. The photoconductivity of the blends is found to increase by almost two orders of magnitude upon thermal annealing for three hours at 100 °C. This increase is attributed to the occurrence of phase separation in the polymer/polymer film, resulting in PCNEPV‐rich parts. The formation of PCNEPV‐rich parts allows the electron to diffuse away from the interface, which favors escape from geminate recombination, leading to a higher photoconductivity.  相似文献   

11.
From studies of two-phase systems (borosilicate matrices containing ZnSe or CdS quantum dots), it was found that the systems exhibit a specific feature associated with the percolation phase transition of charge carriers (excitons). The transition manifests itself as radical changes in the optical spectra of both ZnSe and CdS quantum dot systems and by fluctuations of the emission band intensities near the percolation threshold. These effects are due to microscopic fluctuations of the density of quantum dots. The average spacing between quantum dots is calculated taking into account their finite dimensions and the volume fraction occupied by the quantum dots at the percolation threshold. It is shown that clustering of quantum dots occurs via tunneling of charge carriers between the dots. A physical mechanism responsible for the percolation threshold for charge carriers is suggested. In the mechanism, the permittivity mismatch of the materials of the matrix and quantum dots plays an important role in delocalization of charge carriers (excitons): due to the mismatch, “a dielectric trap” is formed at the external surface of the interface between the matrix and a quantum dot and, thus, surface exciton states are formed there. The critical concentrations of quantum dots are determined, such that the spatial overlapping of such surface states provides the percolation transition in both systems.  相似文献   

12.
The fundamental nature of charge transport in highly ordered organic semiconductors is under constant debate. At cryogenic temperatures, effects within the semiconductor such as traps or the interaction of charge carriers with the insulating substrate (dipolar disorder or Fröhlich polarons) are known to limit carrier motion. In comparison, at elevated temperatures, where charge carrier mobility often also decreases as function of temperature, phonon scattering or dynamic disorder are frequently discussed mechanisms, but the exact microscopic cause that limits carrier motion is debated. Here, the mobility in the temperature range between 200 and 420 K as function of carrier density is explored in highly ordered perylene‐diimide from 3 to 9 nm thin films. It is observed that above room temperature increasing the gate electric field or decreasing the semiconducting film thickness leads to a suppression of the charge carrier mobility. Via X‐ray diffraction measurements at various temperatures and electric fields, changes of the thin film structure are excluded as cause for the observed mobility decrease. The experimental findings point toward scattering sites or traps at the semiconductor–dielectric interface, or in the dielectric as limiting factor for carrier mobility, whose role is usually neglected at elevated temperatures.  相似文献   

13.
The mobility of charge carriers μ in a parabolic quantum well in an electric field E directed along the size-confinement axis is calculated. With consideration for scattering of charge carriers at a rough surface, the mobility μ is shown to decrease with increasing E. A physical interpretation of this effect is proposed.  相似文献   

14.
The electrical transport properties of n-type crystalline-Ge amorphized by ion implantation have been determined by resistivity and Hall effect measurements in the 64–255 K temperature range. Amorphous layer was realized by implanting Ge+ ions in Ge single crystal maintained at ∼77 K at fluences above the amorphization threshold. The samples exhibited a surprising lower sheet resistance with respect of un-implanted crystalline Ge, resulting from positive charge carriers and very high mobility. Experimental observations are consistent with a p-type conduction induced by surface states and a high mobility channel at the amorphous-crystal interface.  相似文献   

15.
In organic solar cells, photogenerated singlet excitons form charge transfer (CT) complexes, which subsequently split into free charge carriers. Here, the contributions of excess energy and molecular quadrupole moments to the charge separation process are considered. The charge photogeneration in two separate bulk heterojunction systems consisting of the polymer donor PTB7-Th and two non-fullerene acceptors, ITIC and h-ITIC, is investigated. CT state dissociation in these donor–acceptor systems is monitored by charge density decay dynamics obtained from transient absorption experiments. The electric field dependence of charge carrier generation is studied at different excitation energies by time delayed collection field (TDCF) and sensitive steady-state photocurrent measurements. Upon excitation below the optical gap, free charge carrier generation becomes less field dependent with increasing photon energy, which challenges the view of charge photogeneration proceeding through energetically lowest CT states. The average distance between electron–hole pairs at the donor–acceptor interface is determined from empirical fits to the TDCF data. The delocalization of CT states is larger in PTB7-Th:ITIC, the system with larger molecular quadrupole moment, indicating the sizeable effect of the electrostatic potential at the donor–acceptor interface on the dissociation of CT complexes.  相似文献   

16.
The effect of redox media on the formation of acceptor centers in the Cd x Hg1 − x Te films grown by molecular beam epitaxy on the GaAs (301) substrates is studied. When tested for long-term stability, the untreated n-type films do not change their parameters, whereas the treated films exhibit a decrease in the conductivity and the mobility of charge carriers by nearly two orders of magnitude. It is shown that, on the treatments, a source of acceptors is formed at the surface, and the acceptors are most likely mercury vacancies.  相似文献   

17.
SiO_2/SiC界面对4H-SiC n-MOSFET反型沟道电子迁移率的影响   总被引:5,自引:2,他引:3  
提出了一种基于器件物理的4 H- Si C n- MOSFET反型沟道电子迁移率模型.该模型包括了界面态、晶格、杂质以及表面粗糙等散射机制的影响,其中界面态散射机制考虑了载流子的屏蔽效应.利用此模型,研究了界面态、表面粗糙度等因素对迁移率的影响,模拟结果表明界面态和表面粗糙度是影响沟道电子迁移率的主要因素.其中,界面态密度决定了沟道电子迁移率的最大值,而表面粗糙散射则制约着高场下的电子迁移率.该模型能较好地应用于器件模拟.  相似文献   

18.
A method to characterize metal–organic contacts subjected to controlled technological treatments or unintentional degradation processes is proposed. The procedure is useful to characterize different fundamental aspects of a metal–organic structure such as the height of the interface energy barrier, the presence of impurities or trapping effects and the carrier mobility. Current–voltage curves in organic diodes are analyzed and the value of the free carrier density at the metal–organic interface is extracted and discussed. The charge carrier density is chosen for this analysis as this is one of the key physical parameters in the understanding of the physical processes involved in the device operation. The extracted charge, when described as a function of the current density, gives information about the doping and impurity concentration, the effective barrier seen by the carriers at the metal–organic interface or effective barriers seen by the carriers in the hopping processes across the organic material. An important advantage of the proposed procedure is the low computational time. Also, the procedure aims to provide a quick analysis for researchers on how the physical properties of the devices are evolving when they are technologically altered or degraded.  相似文献   

19.
The charge carrier dynamics of epitaxial hematite films is studied by time‐resolved microwave (TRMC) and time‐resolved terahertz conductivity (TRTC). After excitation with above bandgap illumination, the TRTC signal decays within 3 ps, consistent with previous reports of charge carrier localization times in hematite. The TRMC measurements probe charge carrier dynamics at longer timescales, exhibiting biexponential decay with characteristic time constants of ≈20–50 ns and 1–2 μs. From the change in photoconductance, the effective carrier mobility is extracted, defined as the product of the charge carrier mobility and photogeneration yield, of differently doped (undoped, Ti, Sn, Zn) hematite films for excitation wavelengths of 355 and 532 nm. It is shown that, unlike in conventional semiconductors, donor doping of hematite dramatically increases the effective mobility of the photogenerated carriers. Furthermore, it is shown that all hematite films possess higher effective mobility for 355 nm excitation than for 532 nm excitation, although the time dependence of the photoconductance decay, or charge carrier lifetime, remains the same. These results provide an explanation for the wavelength dependent photoelectrochemical behavior of hematite photoelectrodes and suggest that an increase in photogeneration yield or charge carrier mobility is responsible for the improved performance at higher excitation energies.  相似文献   

20.
It is demonstrated that a reduction in the defect concentration in ZnO films formed by high-frequency magnetron sputtering allows effective doping with acceptor impurities both in the cation (Li) and anion (N+) sublattices and p-type conductivity with reproducible charge-carrier parameters (concentration and mobility) to be obtained. ZnO films are doped with nitrogen by annealing in a high-frequency gas discharge atmosphere. Hall measurements by the Van der Pauw technique show that the deposition of thin Eu layers on the ZnO film surface increases the concentration and mobility of majority charge carriers. The embedding of metal impurities with different ionic radii (Ag and Au) in the cation sublattice of the ZnO films to compensate misfit stresses makes it possible to enhance the concentration of radiative-recombination centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号