首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein‐based nanomedicine platforms for drug delivery comprise naturally self‐assembled protein subunits of the same protein or a combination of proteins making up a complete system. They are ideal for drug‐delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug‐delivery systems, including the ferritin/apoferritin protein cage, plant‐derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein‐based platforms, including various protein cages, microspheres, nanoparticles, hydrogels, films, minirods, and minipellets. The protein cage is the most newly developed biomaterial for drug delivery and therapeutic applications. The uniform size, multifunctionality, and biodegradability push it to the frontier of drug delivery. In this Review, the recent strategic development of drug delivery is discussed with emphasis on polymer‐based, especially protein‐based, nanomedicine platforms for drug delivery. The advantages and disadvantages are also discussed for each type of protein‐based drug‐delivery system.

  相似文献   


2.
3.
4.
5.
6.
A multifunctional mesoporous drug delivery system that contains fluorescent imaging molecules, targeting proteins, and pH‐sensitive nanovalves is developed and tested. Three nanovalve‐mesoporous silica nanoparticle (NV‐MSN) systems with varied quantities of nanovalves on the surface are synthesized. These systems are characterized and tested to optimize the trade‐off between the coverage of nanovalves on the MSNs to effectively trap and deliver cargo, and the remaining underivatized silanol groups that can be used for protein attachments. The NV‐MSN system that has satisfactory coverage for high loading and spare silanols is chosen, and transferrin (Tf) is integrated into the system. Abiotic studies are performed to test the operation of the nanovalve in the presence of the protein. In vitro studies are carried out to demonstrate the autonomous activation and function of the nanovalves in the system under biological conditions. Enhanced cellular uptake of the Tf‐modified MSNs is seen using fluorescence microscopy and flow cytometry in MiaPaCa‐2 cells. The MSNs are then tested using SCID mice, which show that both targeted and untargeted NV‐MSN systems are fully functional to effectively deliver cargo. These new multifunctional nanoparticles serve proof of concept of nanovalve functionality in the presence of large proteins and demonstrate another dimension of MSN‐based theranostic platforms.  相似文献   

7.
High delivery efficiency, prolonged drug release, and low systemic toxicity are effective weapons for drug delivery systems to win the battle against metastatic breast cancer. Herein, it is shown that Spirulina platensis (S. platensis) can be used as natural carriers to construct a drug‐loaded system for targeted delivery and fluorescence imaging‐guided chemotherapy on lung metastasis of breast cancer. The chemotherapeutic doxorubicin (DOX) is loaded into S. platensis (SP) via only one facile step to fabricate the DOX‐loaded SP (SP@DOX), which exhibits ultrahigh drug loading efficiency and PH‐responsive drug sustained release. The rich chlorophyll endows SP@DOX excellent fluorescence imaging capability for noninvasive tracking and real‐time monitoring in vivo. Moreover, the micrometer‐sized and spiral‐shaped SP carriers enable the as‐prepared SP@DOX to passively target the lungs and result in a significantly enhanced therapeutic efficacy on lung metastasis of 4T1 breast cancer. Finally, the undelivered carriers can be biodegraded through renal clearance without notable toxicity. The SP@DOX described here presents a novel biohybrid strategy for targeted drug delivery and effective treatment on cancer metastasis.  相似文献   

8.
9.
10.
11.
12.
A simple synthetic route for the preparation of functional nanoscale graphene oxide (NGO), a novel nanocarrier for the loading and targeted delivery of anticancer drugs, is reported. The NGO is functionalized with sulfonic acid groups, which render it stable in physiological solution, followed by covalent binding of folic acid (FA) molecules to the NGO, thus allowing it to specifically target MCF‐7 cells, human breast cancer cells with FA receptors. Furthermore, controlled loading of two anticancer drugs, doxorubicin (DOX) and camptothecin (CPT), onto the FA‐conjugated NGO (FA–NGO) via π–π stacking and hydrophobic interactions is investigated. It is demonstrated that FA–NGO loaded with the two anticancer drugs shows specific targeting to MCF‐7 cells, and remarkably high cytotoxicity compared to NGO loaded with either DOX or CPT only. Considering that the combined use of two or more drugs, a widely adopted clinical practice, often displays much better therapeutic efficacy than that of a single drug, the controlled loading and targeted delivery of mixed anticancer drugs using these graphene‐based nanocarriers may find widespread application in biomedicine.  相似文献   

13.
Nanodiamonds (NDs) are promising candidates for biomedical application due to their excellent biocompatibility and innate physicochemical properties. In this Concept article, nanodiamond‐based theranostic platforms, which combine both drug delivery features and bioimaging functions, are discussed. The latest developments of therapeutic strategies are introduced and future perspectives for theranostic NDs are addressed.  相似文献   

14.
15.
16.
17.
18.
Successful gene therapy of neurological disorders is predicated on achieving widespread and uniform transgene expression throughout the affected disease area in the brain. However, conventional gene vectors preferentially travel through low‐resistance perivascular spaces and/or are confined to the administration site even with the aid of a pressure‐driven flow provided by convection‐enhanced delivery. Biodegradable DNA nanoparticles offer a safe gene delivery platform devoid of adverse effects associated with virus‐based or synthetic nonbiodegradable systems. Using a state‐of‐the‐art biodegradable polymer, poly(β‐amino ester), colloidally stable sub‐100 nm DNA nanoparticles are engineered with a nonadhesive polyethylene glycol corona that are able to avoid the adhesive and steric hindrances imposed by the extracellular matrix. Following convection enhanced delivery, these brain‐penetrating nanoparticles are able to homogeneously distribute throughout the rodent striatum and mediate widespread and high‐level transgene expression. These nanoparticles provide a biodegradable DNA nanoparticle platform enabling uniform transgene expression patterns in vivo and hold promise for the treatment of neurological diseases.  相似文献   

19.
The development of theranostic systems capable of diagnosis, therapy, and target specificity is considerably significant for accomplishing personalized medicine. Here, a multifunctional rattle‐type nanoparticle (MRTN) as an effective biological bimodal imaging and tumor‐targeting delivery system is fabricated, and an enhanced loading ability of hydrophobic anticancer drug (paclitaxel) is also realized. The rattle structure with hydrophobic Fe3O4 as the inner core and mesoporous silica as the shell is obtained by one‐step templates removal process, and the size of interstitial hollow space can be easily adjusted. The Fe3O4 core with hydrophobic poly(tert‐butyl acrylate) (PTBA) chains on the surface is not only used as a magnetic resonance imaging (MRI) agent, but contributes to improving hydrophobic drug loading amount. Transferrin (Tf) and a near‐infrared fluorescent dye (Cy 7) are successfully modified on the surface of the nanorattle to increase the ability of near‐infrared fluorescence (NIRF) imaging and tumor‐targeting specificity. In vivo studies show the selective accumulation of MRTN in tumor tissues by Tf‐receptor‐mediated endocytosis. More importantly, paclitaxel‐loaded MRTN shows sustained release character and higher cytotoxicity than the free paclitaxel. This theranostic nanoparticle as an effective MRI/NIRF bimodal imaging probe and drug delivery system shows great potential in cancer diagnosis and therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号