首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While tumoral Smad-mediated transforming growth factor β (TGFβ) signaling drives osteolytic estrogen receptor α-negative (ER-) breast cancer bone metastases (BMETs) in preclinical models, its role in ER+ BMETs, representing the majority of clinical BMETs, has not been documented. Experiments were undertaken to examine Smad-mediated TGFβ signaling in human ER+ cells and bone-tropic behavior following intracardiac inoculation of estrogen (E2)-supplemented female nude mice. While all ER+ tumor cells tested (ZR-75-1, T47D, and MCF-7-derived) expressed TGFβ receptors II and I, only cells with TGFβ-inducible Smad signaling (MCF-7) formed osteolytic BMETs in vivo. Regulated secretion of PTHrP, an osteolytic factor expressed in >90% of clinical BMETs, also tracked with osteolytic potential; TGFβ and E2 each induced PTHrP in bone-tropic or BMET-derived MCF-7 cells, with the combination yielding additive effects, while in cells not forming BMETs, PTHrP was not induced. In vivo treatment with 1D11, a pan-TGFβ neutralizing antibody, significantly decreased osteolytic ER+ BMETs in association with a decrease in bone-resorbing osteoclasts at the tumor-bone interface. Thus, TGFβ may also be a driver of ER+ BMET osteolysis. Moreover, additive pro-osteolytic effects of tumoral E2 and TGFβ signaling could at least partially explain the greater propensity for ER+ tumors to form BMETs, which are primarily osteolytic.  相似文献   

2.
3.
4.
Wang ZQ  Weber N  Lou YJ  Proksch P 《ChemMedChem》2006,1(4):482-488
In the search for estrogen receptor (ER) modulators, a series of prenylflavonoids were found to be widely distributed amongst tonic herbal medicines and to possess estrogen-like activity in MCF-7/BOS cells, as evaluated by an estrogen-screening assay. Cell-cycle analysis revealed that the stimulatory effects of these compounds toward cell proliferation were elicited at the G1-S checkpoint and could significantly increase the S-phase population of MCF-7 cells under hormone-free conditions. ER-responsive gene (PS2, PgR) and protein (PgR) expression was also detected; mRNA and protein-expression levels for PS2 and PgR were up-regulated by the compounds in a dose-dependent manner. These effects could be inhibited by the pure ER antagonist ICI 182,780 ((7alpha-[9-{4,4,5,5,5-pentafluoropentyl}sulfinyl]nonyl)estra-1,3,5(10)-triene-3,17beta-diol). It was therefore concluded that the estrogen-like effects of these prenylflavonoids were mediated primarily through ERs. Furthermore, to explore the structure-activity relationship based on the estrogen receptor and detailed molecular mechanisms among the prenylflavonoids, protein-ligand docking simulations were carried out by using the DS-MODELING software package. The binding affinity of each prenylflavonoid toward ERalpha was scored, and the receptor-ligand interaction was also analyzed to provide the simulation characteristics of virtual molecular recognition mechanisms.  相似文献   

5.
6.
7.
1,25-Dihydroxycholecalciferol, the hormonally active vitamin D3 metabolite, is known to exhibit therapeutic effects against breast cancer, mainly by lowering the expression of estrogen receptors and aromatase activity. Previously, the safety of the vitamin D active metabolite (24R)-1,24-dihydroxycholecalciferol (PRI-2191) and 1,25(OH)2D3 analog PRI-2205 was tested, and the in vitro activity of these analogs against different cancer cell lines was studied. We determined the effect of the two vitamin D compounds on anastrozole (An) activity against breast cancer based on antiproliferative activity, ELISA, flow cytometry, enzyme inhibition potency, PCR, and xenograft study. Both the vitamin D active metabolite and synthetic analog regulated the growth of not only estrogen receptor-positive cells (T47D and MCF-7, in vitro and in vivo), but also hormone-independent cancer cells such as SKBR-3 (HER-2-positive) and MDA-MB-231 (triple-negative), despite their relatively low VDR expression. Combined with An, PRI-2191 and PRI-2205 significantly inhibited the tumor growth of MCF-7 cells. Potentiation of the antitumor activity in combined treatment of MCF-7 tumor-bearing mice is related to the reduced activity of aromatase by both An (enzyme inhibition) and vitamin D compounds (switched off/decreased aromatase gene expression, decreased expression of other genes related to estrogen signaling) and by regulation of the expression of the estrogen receptor ERα and VDR.  相似文献   

8.
We report a new family of bis‐arylidene oxindole derivatives that show highly selective estrogen receptor (ER)‐mediated anticancer activity at low‐nanomolar concentrations in ER‐positive (ER+) breast cancer cells. In terms of cell growth inhibition, IC50 values for these compounds in ER+ breast cancer cells are two to three orders of magnitude lower than in ER‐negative (ER?) breast cancer cells and non‐cancer cells. In comparison with known bis‐arylidene drugs, these compounds are at least three orders of magnitude more toxic than tamoxifen and 1.5–4‐fold more toxic than 4‐hydroxytamoxifen in ER+ MCF‐7 cancer cells. These oxindoles inhibit ER transactivation, and their anticancer activities are inhibited in ER‐depleted MCF‐7 cells. Some of these nonsteroidal molecules also exhibit essential properties of selective ER down‐regulation. From the development of two series of bis‐arylidene oxindole‐based compounds, we report a new series of anticancer agents for estrogen‐responsive breast cancer.  相似文献   

9.
Tamoxifen, a therapeutic agent for breast cancer, has been associated with genetic polymorphisms in the metabolism of N,N-dialkylaminoethyl substituent, which plays an important role in the expression of selective estrogen receptor modulator (SERM) activity. To solve this problem, we developed a novel estrogen receptor (ER) modulator, Az-01, on the basis of the aromaticity, dipole moment, and isopropyl group of guaiazulene. Az-01 showed four-fold lower binding affinity for ER than E2 but had similar ER-binding affinity to that of 4-hydroxytamoxifen (4-HOtam). Unlike tamoxifen, Az-01 acted as a partial agonist with very weak estrogenic activity at high concentrations when used alone, and it showed potent anti-estrogenic activity in the presence of E2. The cell proliferation and inhibition activities of Az-01 were specific to ER-expressing MCF-7 cells, and no effect of Az-01 on other cell proliferation signals was observed. These findings are important for the development of new types of SERMs without the N,N-dialkylaminoethyl substituent as a privileged functional group for SERMs.  相似文献   

10.
Breast cancer MCF-7 cell-line-derived mammospheres were shown to be enriched in cells with a CD44+/CD24– surface profile, consistent with breast cancer stem cells (BCSC). These BCSC were previously reported to express key sphingolipid signaling effectors, including pro-oncogenic sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate receptor 3 (S1P3). In this study, we explored intracellular trafficking and localization of SphK1 and S1P3 in parental MCF-7 cells, and MCF-7 derived BCSC-enriched mammospheres treated with growth- or apoptosis-stimulating agents. Intracellular trafficking and localization were assessed using confocal microscopy and cell fractionation, while CD44+/CD24- marker status was confirmed by flow cytometry. Mammospheres expressed significantly higher levels of S1P3 compared to parental MCF-7 cells (p < 0.01). Growth-promoting agents (S1P and estrogen) induced SphK1 and S1P3 translocation from cytoplasm to nuclei, which may facilitate the involvement of SphK1 and S1P3 in gene regulation. In contrast, pro-apoptotic cytokine tumor necrosis factor α (TNFα)-treated MCF-7 cells demonstrated increased apoptosis and no nuclear localization of SphK1 and S1P3, suggesting that TNFα can inhibit nuclear translocation of SphK1 and S1P3. TNFα inhibited mammosphere formation and induced S1P3 internalization and degradation. No nuclear translocation of S1P3 was detected in TNFα-stimulated mammospheres. Notably, SphK1 and S1P3 expression and localization were highly heterogenous in mammospheres, suggesting the potential for a large variety of responses. The findings provide further insights into the understanding of sphingolipid signaling and intracellular trafficking in BCs. Our data indicates that the inhibition of SphK1 and S1P3 nuclear translocation represents a novel method to prevent BCSCs proliferation.  相似文献   

11.
A series of new derivatives of estradiol substituted at position 17alpha by various aryls has been synthesized. This was made possible by efficient activation methods for the addition of aryllithiums to the carbonyl group at position 17 of estrone by using tetramethylethylenediamine (TMEDA) or BF3 x OEt2. Their relative binding affinity (RBA) for the alpha and the beta forms of the estrogen receptor (ER) have been measured. All except one of the compounds synthesized had an RBA value of around 10 % which indicates a level of tolerance towards the bulky substituent at position 17. The lipophilicity values measured for these compounds are higher than that found for estradiol (E2). A study of their proliferative/antiproliferative effects was carried out on hormone-dependent (MCF7) and hormone-independent (MDA-MB231) breast cancer cell lines. It is interesting to note that all the compounds are estrogenic. The possibility of easily attaching an iodine at the end of a phenyl spacer opens up a route to new radiopharmaceuticals for use in radioimaging.  相似文献   

12.
Although numerous experiments revealed an essential role of a lipid mediator, sphingosine-1-phosphate (S1P), in breast cancer (BC) progression, the clinical significance of S1P remains unclear due to the difficulty of measuring lipids in patients. The aim of this study was to determine the plasma concentration of S1P in estrogen receptor (ER)-positive BC patients, as well as to investigate its clinical significance. We further explored the possibility of a treatment strategy targeting S1P in ER-positive BC patients by examining the effect of FTY720, a functional antagonist of S1P receptors, on hormone therapy-resistant cells. Plasma S1P levels were significantly higher in patients negative for progesterone receptor (PgR) expression than in those positive for expression (p = 0.003). Plasma S1P levels were also significantly higher in patients with larger tumor size (p = 0.012), lymph node metastasis (p = 0.014), and advanced cancer stage (p = 0.003), suggesting that higher levels of plasma S1P are associated with cancer progression. FTY720 suppressed the viability of not only wildtype MCF-7 cells, but also hormone therapy-resistant MCF-7 cells. Targeting S1P signaling in ER-positive BC appears to be a possible new treatment strategy, even for hormone therapy-resistant patients.  相似文献   

13.
14.
The aryl hydrocarbon receptor (AHR) is a ligand-activated signaling molecule expressed in many cell types, including triple-negative and non-triple-negative breast cancer cells. It affects breast cancer growth and crosstalk with estrogen receptor signaling. Normally, this receptor is degraded shortly after ligand activation via the 26S proteasome. Here, we report that AHR undergoes chaperone-mediated autophagy in MDA-MB-468 triple-negative breast cancer cells. This lysosomal degradation of AHR exhibits the following characteristics: (1) it is triggered by 6 amino-nicotinamide, starvation, and piperazinylpyrimidine compound Q18; (2) it is not observed in non-triple-negative breast cancer cells (MCF-7, T47D, and MDA-MB-361); (3) it can be inhibited by progesterone receptor B but not estrogen receptor alpha; (4) it can be reversed by chloroquine but not MG132; (5) it requires LAMP2A; and (6) it involves AHR-HSC70 and AHR-LAMP2A interactions. The NEKFF sequence localized at amino acid 558 of human AHR appears to be a KFERQ-like motif of chaperone-mediated autophagy, responsible for the LAMP2A-mediated AHR protein degradation.  相似文献   

15.
16.
Previously, we discovered estrogen receptor (ER) ligands with a novel three-dimensional oxabicyclo[2.2.1]heptene core scaffold and good ER binding affinity act as partial agonists via small alkyl ester substitutions on the bicyclic core that indirectly modulate the critical switch helix in the ER ligand binding domain, helix 12, by interactions with helix 11. This contrasts with the mechanism of action of tamoxifen, which directly pushes helix 12 out of the conformation required for gene activation. We now report that a much larger substitution can be tolerated at this position of the bicyclic core scaffold, namely a phenyl sulfonate group, which defines a novel binding epitope for the estrogen receptor. We prepared an array of 14 oxabicycloheptene sulfonates, varying the phenyl sulfonate group. As with the parent compound, 5,6-bis-(4-hydroxyphenyl)-7-oxabicyclo[2.2.1]hept-5-ene-2-sulfonic acid phenyl ester (OBHS), these compounds showed preferential affinity for ERα, and the disposition and size of the phenyl substituents were important determinants of the binding affinity and selectivity of these compounds, with those having ortho substituents giving the highest, and para substituents the lowest affinities for ERα. A few analogues exhibit ERα binding affinities that are comparable to or, in the case of the ortho-chloro analogue, higher than that of OBHS itself. In cell-based studies, we found several compounds with activity profiles comparable to tamoxifen, but acting entirely as indirect antagonists, allosterically interfering with recruitment of coactivator proteins to the receptor. Thus, the OBHS binding epitope represents a novel approach to the development of estrogen receptor antagonists via an indirect mechanism of antagonism.  相似文献   

17.
Estrogen receptor-alpha (ERα) is the target of endocrine therapies for the treatment of more than 70 % of ERα-positive breast cancers. Selective estrogen receptor degraders (SERDs) antagonize estrogen binding and target the receptor for degradation, representing the last line of treatment for resistant metastatic breast cancer patients. However, the clinical efficacy of the lone clinically approved SERD (Fulvestrant) is limited by its poor oral bioavailability. Recently, several analogues of GW5638, an acrylic acid-based ERα ligand developed by Glaxo Research Institute in 1994, have been reported as promising orally bioavailable SERDs. Some of these compounds are currently in clinical trials, while various other structurally novel SERDs have also been reported by pharma as well as academic research groups. This review provides a critical analysis of the recent developments in orally available SERDs, with a focus on the structure–activity relationships, binding interactions and pharmacokinetic properties of these compounds  相似文献   

18.
Clinical outcomes of melanoma patients pointed out a gender disparity that supports a correlation between sex hormone activity on estrogen receptors (ER) and melanoma development and progression. Here, we found that the epithelial-to-mesenchymal transition (EMT) of melanoma cells induced by extracellular acidosis, which is a crucial hallmark of solid cancers, correlates with the expression of ERβ, the most representative ER on melanoma cells. Extracellular acidosis induces an enhanced expression of ERβ in female cells and EMT markers remain unchanged, while extracellular acidosis did not induce the expression of ERβ in male cells and EMT was strongly promoted. An inverse relationship between ERβ expression and EMT markers in melanoma cells of different sex exposed to extracellular acidosis was revealed by two different technical approaches: florescence-activated cell sorting of high ERβ expressing cell subpopulations and ERβ receptor silencing. Finally, we found that ERβ regulates EMT through NF-κB activation. These results demonstrate that extracellular acidosis drives a differential ERβ regulation in male and female melanoma cells and that this gender disparity might open new perspectives for personalized therapeutic approaches.  相似文献   

19.
Breast cancer has become a global health issue requiring huge expenditures for care and treatment of patients. There is a need to discover newer cost-effective alternatives for current therapeutic regimes. Mango kernel is a waste product with potential as a source of anti-cancer phytochemicals, especially since it is non-toxic towards normal breast cell lines at concentrations for which it induces cell death in breast cancer cells. In this study, the anti-cancer effect of mango kernel extract was determined on estrogen receptor-positive human breast carcinoma (MCF-7) cells. The MCF-7 cells were cultured and treated with 5, 10 and 50 μg/mL of mango kernel extract for 12 and 24 h. In response to treatment, there were time- and dose-dependent increases in oxidative stress markers and pro-apoptotic factors; Bcl-2-like protein 4 (BAX), p53, cytochrome c and caspases (7, 8 and 9) in the MCF-7 cells treated with the extract. At the same time, there were decreases in pro-survival markers (Bcl-2 and glutathione) as the result of the treatments. The changes induced in the MCF-7 cells by mango kernel extract treatment suggest that the extract can induce cancer cell apoptosis, likely via the activation of oxidative stress. These findings need to be evaluated further to determine whether mango kernel extract can be developed as an anti-breast cancer agent.  相似文献   

20.
Five new compounds, eupatodibenzofuran A (1), eupatodibenzofuran B (2), 6-acetyl-8-methoxy-2,2-dimethylchroman-4-one (3), eupatofortunone (4), and eupatodithiecine (5), have been isolated from the aerial part of Eupatorium fortunei, together with 11 known compounds (6‒16). Compounds 1 and 2 featured a new carbon skeleton with an unprecedented 1-(9-(4-methylphenyl)-6-methyldibe nzo[b,d]furan-2-yl)ethenone. Among the isolates, compound 1 exhibited potent inhibitory activity with IC50 values of 5.95 ± 0.89 and 5.55 ± 0.23 μM, respectively, against A549 and MCF-7 cells. The colony-formation assay demonstrated that compound 1 (5 μM) obviously decreased A549 and MCF-7 cell proliferation, and Western blot test confirmed that compound 1 markedly induced apoptosis of A549 and MCF-7 cells through mitochondrial- and caspase-3-dependent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号