首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three conditioned suppression experiments with rats examined the role of the hippocampus in 2 effects of context after extinction. Reinstatement is the context-specific recovery of fear to an extinguished conditioned stimulus (CS) that occurs following independent presentations of the unconditioned stimulus (UCS), after extinction. Renewal is the recovery of fear when the CS is presented in the context in which it was conditioned, after extinction in a different context. Results indicated that neurotoxic lesions of the hippocampus, performed before conditioning, abolished reinstatement, which depends on context–UCS associations, but not renewal, which does not. This dissociation is not the result of differences in the recentness of context learning that ordinarily governs the 2 effects. The results suggest that the hippocampus is necessary for some, but not all, types of contextual learning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
Reports an error in "Disruption of contextual freezing, but not contextual blocking of fear-potentiated startle, after lesions of the dorsal hippocampus" by Kenneth A. McNish, Jonathan C. Gewirtz and Michael Davis (Behavioral Neuroscience, 2000[Feb], Vol 114[1], 64-76). The captions for Figure 4 (p. 70) and Figure 5 (p. 72) were printed incorrectly. The caption used for Figure 4 should appear under Figure 5, and the caption used for Figure 5 should appear under Figure 4. (The following abstract of the original article appeared in record 2000-13470-005.) The role of the dorsal hippocampus in contextual fear conditioning was investigated with a contextual blocking paradigm. In Experiment 1, rats were given pairings of a light conditioned stimulus (CS) and footshock after preexposure either to footshock or to the context alone. The group preexposed to footshock showed poorer fear conditioning to the light CS, as measured by the fear-potentiated startle reflex. In Experiment 2, a group preexposed to footshock in the same context showed poorer fear conditioning to the light CS than did a group preexposed to footshock in a different context, indicating contextual blocking of fear-potentiated startle. In Experiment 3, lesions of the dorsal hippocampus had no effect on contextual blocking, even though contextual freezing was disrupted. The sparing of contextual blocking indicated that contextual memory was intact following hippocampal lesions, despite the disruption of contextual freezing. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
The effect of fornix lesions on some effects of manipulating the context on performance in extinction were studied. In renewal, subjects' responding to an extinguished CS recovered when the CS was presented in the context in which it had been conditioned after extinction in a different context. In reinstatement, it recovered when the CS was tested after independent presentation of the unconditioned stimulus (UCS; an effect mediated by contextual conditioning.) In spontaneous recovery, it recovered after the passage of time, that is, when the CS was tested in a new temporal context. In the conditioned suppression method, fornix lesions had no effect on conditioning, extinction, renewal, or spontaneous recovery; however, they abolished the reinstatement effect. The results suggest that the hippocampal system may be important in the formation of context–UCS associations, but not in other types of learning about the context. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
The authors investigated the role of medial prefrontal cortex (mPFC) in the inhibition of conditioned fear in rats using both Pavlovian extinction and conditioned inhibition paradigms. In Experiment 1, lesions of ventral mPFC did not interfere with conditioned inhibition of the fear-potentiated startle response. In Experiment 2, lesions made after acquisition of fear conditioning did not retard extinction of fear to a visual conditioned stimulus (CS) and did not impair "reinstatement" of fear after unsignaled presentations of the unconditioned stimulus. In Experiment 3, lesions made before fear conditioning did not retard extinction of fear-potentiated startle or freezing to an auditory CS. In both Experiments 2 and 3, extinction of fear to contextual cues was also unaffected by the lesions. These results indicate that ventral mPFC is not essential for the inhibition of fear under a variety of circumstances. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
A contextual reinstatement procedure was developed to assess the contributions of environmental cues and hippocampal function in the recovery of conditioned fear following extinction in humans. Experiment 1 showed context specificity in the recovery of extinguished skin conductance responses after presentations of an auditory unconditioned stimulus. Experiment 2 demonstrated that fear recovery did not generalize to an explicitly unpaired conditioned stimulus. Experiment 3 replicated the context dependency of fear recovery with a shock as an unconditioned stimulus. Two amnesic patients failed to recover fear responses following reinstatement in the same context, despite showing initial fear acquisition. These results extend the known functions of the human hippocampus and highlight the importance of environmental contexts in regulating the expression of latent fear associations. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
The control of conditioned fear behaviour by a conditional stimulus (CS) and contextual stimuli (CXT) was compared in rats with lesions to the hippocampus (HPC) or neocortex (CO), and operated controls (OC). After classical fear conditioning in a distinctive context, rats were subsequently tested in the presence of the CS and CXT (CS + CXT), the CS alone (CS-only), or context alone (CXT-only). Two experiments were conducted in which conditioned fear was measured by an active avoidance response (experiment 1) or by response suppression (experiment 2). Groups did not differ in acquiring the conditioned fear response, as measured in the CS + CON test but, in both experiments, hippocampal (HPC) groups exhibited more conditioned fear behaviour than controls in the CXT-Only and CS-Only conditions. It was suggested that control rats conditioned the fear response to a stimulus complex that incorporated the CS and CTX. Rats with HPC lesions did not form this association between the stimulus elements; instead they segregated the CS and CXT and formed independent associations between the conditioned response (CR) and each component. In showing that HPC damage disrupts the process of forming associations between environmental stimuli and that the effect is not restricted to contextual cues, the results help to resolve apparently contradictory findings regarding the role of HPC in contextual information processing.  相似文献   

7.
Six experiments studied the role of conditioned stimulus (CS) familiarity in determining the effects of the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 on fear extinction. Systemic administration of MK-801 (0.1 mg/kg) impaired initial extinction but not reextinction learning. MK-801 impaired reextinction learning when the CS was relatively novel during reextinction training but not initial extinction learning when the CS was relatively familiar during initial extinction training. A context change failed to reinstate the sensitivity of initial fear extinction learning about a relatively familiar CS to MK-801. These experiments show that CS familiarity is an important determinant of effects of MK-801 on fear extinction learning: MK-801 impaired extinction learning about novel stimuli but spared extinction learning about familiar stimuli. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
The contribution of the amygdala and hippocampus to the acquisition of conditioned fear responses to a cue (a tone paired with footshock) and to context (background stimuli continuously present in the apparatus in which tone–shock pairings occurred) was examined in rats. In unoperated controls, responses to the cue conditioned faster and were more resistant to extinction than were responses to contextual stimuli. Lesions of the amygdala interfered with the conditioning of fear responses to both the cue and the context, whereas lesions of the hippocampus interfered with conditioning to the context but not to the cue. The amygdala is thus involved in the conditioning of fear responses to simple, modality-specific conditioned stimuli (CS) as well as to complex, polymodal stimuli, whereas the hippocampus is only involved in fear conditioning situations involving complex, polymodal events. Findings suggest an associative role for the amygdala and a sensory relay role for the hippocampus in fear conditioning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
The hippocampus is believed to be an important structure for learning tasks that require temporal processing of information. The trace classical conditioning paradigm requires temporal processing because the conditioned stimulus (CS) and the unconditioned stimulus (US) are temporally separated by an empty trace interval. The present study sought to determine whether the hippocampus was necessary for rats to perform a classical trace fear conditioning task in which each of 10 trials consisted of an auditory tone CS (1 5-s duration) followed by an empty 30-s trace interval and then a fear-producing floor-shock US (0.5-s duration). Several weeks prior to training, animals were anesthetized and given aspiration lesions of the neocortex (NEO; n = 6), hippocampus and overlying neocortex (HIPP; n = 7), or no lesions at all (control; n = 6). Approximately 24 h after trace conditioning, NEO and control animals showed a significant decrease in movement to a CS-alone presentation that was indicative of a conditioned fear response. Animals in the HIPP group did not show conditioned fear responses to the CS alone, nor did a pseudoconditioning group (n = 7) that was trained with unpaired CSs and USs. Furthermore, all groups except the HIPP group showed conditioned fear responses to the original context in which they received shock USs. One week later, HIPP, NEO, and control animals received delay fear-conditioning trials with no trace interval separating the CS and US. Six of seven HIPP animals could perform the delay version, but none could perform the trace version. This result suggests that the trace fear task is a reliable and useful model for examining the neural mechanisms of hippocampally dependent learning.  相似文献   

10.
Five conditioned suppression experiments, with 160 Wistar rats, explored the role of the conditioning history of the conditioned stimulus (CS) in determining the effects of contextual fear on performance to the CS. Contextual fear was produced by postconditioning exposure to unconditioned stimulus/stimuli (UCS) alone in the context of conditioning; it was independently assessed with context-preference tests. When the number of reinforced and nonreinforced trials was equated across extinction, partial reinforcement, and latent inhibition procedures, only the extinction procedure produced a CS whose performance was subsequently affected (i.e., augmented) by contextual fear. Contextual fear's relatively unique augmenting effect on fear of an extinguished CS was abolished by extensive, but not by less extensive, reacquisition training. Results indicate that, depending on the CS's conditioning history, contextual fear either augments or has little effect on fear of the CS. It is suggested that augmentation by context should be viewed as the restoration of fear that is otherwise depressed by extinction. (28 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
The emotional reactivity of rats with lesions of the dorsal portion of medial prefrontal cortex (mPFC) was examined using a classical fear conditioning paradigm. Conditioned fear behavior (freezing responses) was measured during both the acquisition and extinction phases of the task. Lesions enhanced fear reactivity to both the conditioned stimulus (CS) and contextual stimuli during both phases, suggesting that dorsal mPFC lesions produce a general increase in fear reactivity in response to fear conditioning. M. A. Morgan, L. M. Romanski, and J. E. LeDoux (1993) found that lesions just ventral to the present lesions had no effect during acquisition of the same task and prolonged the fear response to the CS (but not the context) during extinction. Thus, both dorsal and ventral regions of mPFC are involved in the fear system, but each modulates different aspects of fear responsivity. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
Previous studies examining the neural substrates of fear conditioning have indicated unequivocally that the acquisition and expression of conditioned fear depends critically on the integrity of the amygdala. The extent to which the rhinal cortical areas contribute to fear conditioned to either the explicit conditioned stimulus (CS) or to the training context is less clear, however. The effects of pretraining lesions of the anterior perirhinal (PRH) cortex on fear conditioned to an explicit odor CS and to the context in which CS–unconditioned stimulus pairing took place was examined in rats. Rats with PRH cortex lesions demonstrated a robust attenuation of fear conditioned to the explicit CS, but no attenuation of fear conditioned to the training context. These data suggest that the PRH cortex is an important component of the neural system supporting the association between olfactory cues and footshock and add to a growing body of evidence implicating the rhinal cortical regions in associative learning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
Six experiments with rat subjects examined the effect of yohimbine, an alpha-2 adrenergic autoreceptor antagonist, on the extinction of conditioned fear to a tone. Experiments 1 and 2 demonstrated that systemic administration of yohimbine (1.0 mg/kg) facilitated a long-term decrease in freezing after extinction, and this depended on pairing drug administration with extinction training. However, Experiments 3 and 4 demonstrated that yohimbine did not eradicate the original fear learning: Freezing was renewed when the tone was tested outside of the extinction context. Experiments 5 and 6 found that the contextually specific attenuation of fear produced by yohimbine transferred to another extinguished conditional stimulus (CS) and not to a nonextinguished CS. The results suggest that yohimbine, when administered in the presence of a neutral context, creates a form of inhibition in that context that allows that specific context to reduce fear of an extinguished CS. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
Rats were injected with a benzodiazepine (midazolam) and shocked after presentation of an auditory conditioned stimulus (CS). They were then tested for fear reactions (freezing) to the CS in either the original context or a 2nd context after either a short (1-day) or long (21-day) retention interval. Rats tested in the original context froze less after 1 day than rats tested after that interval in the 2nd context or rats tested after 21 days. Moreover, rats tested after the long interval in the original context froze less than rats tested after that interval in the 2nd context. Therefore, midazolam does not impair the acquisition of conditioned fear but regulates when and where that fear is expressed. These effects of midazolam were interpreted as a contextually controlled deficit in the expression of conditioned fear that is similar to that associated with latent inhibition and extinction (M. E. Bouton, 1993). (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
A series of experiments used a within-subject design to study spontaneous recovery of fear responses (freezing) to an extinguished conditioned stimulus (CS) in rats. Experiments 1, 2, 3, and 4 demonstrated that: a remotely extinguished CS elicited more freezing than a recently extinguished one on a common test; that the CS showing recovery underwent greater response loss across additional extinction than the one lacking recovery; and that spontaneous recovery and deepening of response loss survived reconditioning. Experiment 5 demonstrated that an excitor extinguished in compound with a CS showing recovery suffered greater loss than an excitor extinguished in compound with a CS not showing recovery, implying that the differential change is regulated by a common error term. Experiments 6 and 7 demonstrated that extinction of a compound composed of two CSs, one showing recovery and a second lacking recovery, produced greater loss to the CS that showed recovery, implying that the change is also regulated by individual error term. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
Reports an error in the original article "Lesions of the Dorsal Hippocampus Block Trace Fear Conditioned Potentiation of Startle" by Markus Fendt, Michael S. Fanselow, and Michael Koch (Behavioral Neuroscience, 2005, Vol. 119, No. 3, pp. 834-838). On page 834, the Author note contains incorrect affiliation and acknowledgement information. The correct version is presented here. (The following abstract of this article originally appeared in record 2005-06959-021.) Several studies show that the hippocampus is critical for the memories mediating trace and contextual fear conditioning. This study investigates whether N-methyl-D-aspartate-induced lesions of the dorsal hippocampus made prior to training affect context fear conditioning and trace fear conditioning measured with the fear-potentiated startle. Pretraining excitotoxic lesions of the dorsal hippocampus blocked acquisition of trace fear conditioning to a tone stimulus but did not affect context fear conditioning. These data indicate that without a dorsal hippocampus rats are unable to acquire trace conditioning but can acquire contextual fear when fear is measured by potentiation of the startle response. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
Lesions placed in the rostral perirhinal cortex (rPRh) after fear conditioning interfere with the expression of conditioned fear responses elicited by auditory and visual conditioned stimuli when these stimuli are presented in a context that differs from the conditioning context. The present study examined whether lesions of the rPRh have similar effects when animals are tested in the conditioning context. Two days after male rats received classical fear conditioning, involving the pairing of an auditory CS with footshock, bilateral electrolytic lesions were produced in the rPRh. Five days later conditioned freezing behavior was measured during a 60-s exposure to the CS in a novel context and then 1 hr later in the conditioning context. There were 3 major findings: rPRh-lesioned Ss froze significantly less than controls to the CS in the novel context, thus confirming previously reported findings. rPRh-lesioned Ss also froze less than controls to the CS in the conditioning context, but froze significantly more to the CS in the conditioning than in the novel context, suggesting that at least part of the deficit in the novel context is due to the absence of contextual cues. Ss with rPRh lesions froze significantly less than controls to the conditioning context itself.… (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
C. Shi and M. Davis (see record 1999-00012-009) recently reported that combined lesions of the posterior extension of the intralaminar complex (PINT) and caudal insular cortex (INS) block acquisition but not expression of fear-potentiated startle to discreet conditioned stimuli (CSs) and a footshock unconditioned stimulus (US) and proposed that PINT-INS projections to the amygdala constitute the essential US pathways involved in fear conditioning. The present study further tested this hypothesis by examining whether PINT-INS lesions block fear conditioning (as measured by freezing) to diffuse-context and discrete-tone CSs, and whether posttraining lesions with continued CS–US training result in extinction to the CSs. Posttraining lesions resulted in a selective attenuation of tone conditoning, but context conditioning was unaffected by pre-and posttraining lesions. These results do not support the view that the PINT-INS represent the essential US pathway in fear conditioning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Conditioned fear in rats was assessed for the effects of pretraining amygdala lesions (unilateral vs. bilateral) across unconditioned stimulus (US) modalities (white noise vs. shock). In contrast to sham controls, unilateral amygdala lesions significantly reduced conditioned freezing responses, whereas bilateral amygdala lesions resulted in a nearly complete lack of freezing to both the conditioned stimulus (CS) and the context. The lesion effects were more pronounced for CS conditioning but were consistent across US modalities. It was concluded that white noise can serve as an effective US and that unilateral amygdala lesions attenuate but do not eliminate conditioned fear in rats. The results support our interpretation of a recent fear conditioning study in humans (K. S. LaBar, J. E. LeDoux, D. D. Spencer, & E. A. Phelps, 1995).  相似文献   

20.
Using Pavlovian conditioned increases in the amplitude of the acoustic startle reflex as a behavioral indicator of fear motivation, the authors previously showed a resistance to extinction after repeated associations of cocaine with the fear-evoking conditioned stimulus (CS). In Experiment 1, acute administration of cocaine, amphetamine, and the dopamine (DA) D1 receptor agonist SKF 38393 produced a similar fear enhancement. In Experiment 2, a noncontingent injection of cocaine and SKF 38393 provoked a CS potentiation of acoustic startle in fear-extinguished laboratory rats. Potential behavioral, neurochemical, and neuroendocrine explanations for the effects of psychomotor stimulants on conditional fear were discussed. It was suggested that DA agonist drugs increase fear expression possibly by activating mesoamygdaloid associative neurocircuitry involved in excitatory conditioned fear reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号