首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous studies have demonstrated the efficiency of ultraviolet (UV) radiation for the inactivation of oocysts of Cryptosporidium parvum. In these studies inactivation is measured as reduction in oocysts. A primary goal is to estimate the UV radiation required to achieve a high degree of inactivation. Different lots of Cryptosporidium parvum oocysts are used in these studies, and the inactivation rate may vary depending on the lot of oocysts used. The goal of this paper is to account for the error in estimating the amount of inactivation after exposure to UV radiation, and for the effect of lot variability in determining the required UV radiation. A Bayesian approach is used to simultaneously model the logistic dose-response model and the UV inactivation kinetic model. The oocysts lot variability is incorporated using a hierarchical Bayesian model. Posterior distributions using Markov Chain Monte Carlo method is used to obtain estimates and Bayesian credible interval for the required UV radiation to achieve a given inactivation level of Cryptosporidium parvum oocysts.  相似文献   

2.
This study measured the inactivation rate of bovine genotype A Cryptosporidium parvum oocysts attributable to diurnal oscillations of ambient temperature and solar radiation typical of California rangelands and dairies from spring through autumn. We first measured the relationship between air temperature and the internal temperature of bovine feces exposed to sunlight on commercial operations throughout California. Once maximum air temperature exceeded the mid 20 degrees C, diurnal thermal regimes of bovine fecal material exhibited peaks of over 40, 50, 60, and 70 degrees C. These diurnal thermal regimes were emulated using a thermocycler, with oocysts suspended in distilled water or fecal-water mix. Using oral inoculations of 10(5) C. parvum oocysts per neonatal Balb/c mouse (>1000-fold the ID50), no infections were observed using 1 to 5-day cycles of these thermal regimes. Loss of infectivity induced bythese thermal regimes was primarily due to partial or complete in vitro excystation during the first 24-h diurnal cycle and secondarily to thermal inactivation of the remaining intact or partial oocysts. These results suggest that as ambient conditions generate internal fecal temperatures > or = 40 degrees C via conduction, radiation, and convection, rapid environmental inactivation occurs at a rate of > or = 3.27 log reduction d(-1) for C. parvum oocysts deposited in the feces of cattle.  相似文献   

3.
The human and animal pathogen Giardia lamblia is a waterborne risk to public health because the cysts are ubiquitous and persistent in water and wastewater, not completely removed by physical-chemical treatment processes, and relatively resistant to chemical disinfection. Given the recently recognized efficacy of UV irradiation against Cryptosporidium parvum oocysts, the inactivation of G. lamblia cysts in buffered saline water at pH 7.3 and room temperature by near monochromatic (254 nm) UV irradiation from low-pressure mercury vapor lamps was determined using a "collimated beam" exposure system. Reduction of G. lamblia infectivity for gerbils was very rapid and extensive, reaching a detection limit of >4 log within a dose of 10 JM-2. The ability of UV-irradiated G. lamblia cysts to repair UV-induced damage following typical drinking water and wastewater doses of 160 and 400 JM(-2) was also investigated using experimental protocols typical for bacterial and eucaryotic DNA repair under both light and dark conditions. The infectivity reduction of G. lamblia cysts at these UV doses remained unchanged after exposure to repair conditions. Therefore, no phenotypic evidence of either light or dark repair of DNA damage caused by LP UV irradiation of cysts was observed at the UV doses tested. We conclude that UV disinfection at practical doses achieves appreciable (much greater than 4 log) inactivation of G. lamblia cysts in water with no evidence of DNA repair leading to infectivity reactivation.  相似文献   

4.
Cryptosporidium parvum has historically been associated with waterborne outbreaks of diarrheal illness. Foodborne cryptosporidiosis has been associated with unpasteurized apple cider. Infectious oocysts are shed in the feces of common ruminants like cattle and deer in and near orchards. In this study, the ability of organic acids and hydrogen peroxide (H2O2) added to fruit juice to inhibit the survival of C. parvum was analyzed. Oocyst viability was analyzed by a cell culture infectivity assay with the use of a human ileocecal cell line (HCT-8) whose infectivity pattern is similar to that for human oral infectivity. Cell monolayers were infected with 10(6) treated oocysts or a series of 10-fold dilutions. Parasitic life stages were visualized through immunohistochemistry with 100 microscope fields per monolayer being counted. In vitro excystation assays were also used to evaluate these treatments. Organic acids and H2O2 were added to apple cider, orange juice, and grape juices on a weight/volume basis. Malic, citric, and tartaric acids at concentrations of 1 to 5% inhibited C. parvum's infectivity of HCT-8 cells by up to 88%. Concentrations ranging from 0.025 to 3% H2O2 were evaluated. The addition of 0.025% H2O2 to each juice resulted in a >5-log reduction of C. parvum infectivity as determined with a most-probable-number-based cell culture infectivity assay. As observed with differential interference contrast and scanning electron microscopy, reduced infectivity may be mediated through effects on the oocyst wall that are caused by the action of H2O2 or related oxygen radicals. The addition of low concentrations of H2O2 can represent a valuable alternative to pasteurization.  相似文献   

5.
Cryptosporidium parvum is a well-recognized pathogen of significant medical importance, and cider (apple juice) has been associated with foodborne cryptosporidiosis. This study investigated the effect of flash pasteurization on the viability of contaminant C. parvum oocysts. Cider inoculated with oocysts was heated at 70 or 71.7 degrees C for 5, 10, or 20 s, and oocyst viability was measured by a semiquantitative in vitro infectivity assay. By infecting multiple wells of confluent Madin-Darby bovine kidney cells with serial dilutions of heat-treated oocysts and examining infected cells by indirect fluorescent antibody staining, the most probable number technique was applied to quantify log reduction of oocyst viability. Heating for 10 or 20 s at either temperature caused oocyst killing of at least 4.9 log (or 99.999%), whereas oocyst inactivation after pasteurization for 5 s at 70 and 71.7 degrees C was 3.0 log (99.9%) and 4.8 log (99.998%), respectively. Our results suggested that current practices of flash pasteurization in the juice industry are sufficient in inactivating contaminant oocysts.  相似文献   

6.
Effect of high hydrostatic pressure on Cryptosporidium parvum infectivity   总被引:1,自引:0,他引:1  
The incidence of foodborne disease outbreaks caused by contaminated low-pH fruit juices is increasing. With recent mandatory pasteurization of apple juice and the industry's concerns of food safety, fruit juice processors are showing more interest in alternative nonthermal technologies that can kill >99.99% of microbial pathogens present in foods. The association of the coccidian protozoan, Cryptosporidium, with diarrheal disease outbreaks from contaminated tap water and fruit juice raises a safety concern in the food and beverage industries. The objective of this study was to evaluate the effects of high hydrostatic pressure (HHP) on C. parvum oocysts. Oocysts were suspended in apple and orange juice and HHP treated at 5.5 x 10(8) Pa (80,000 psi) for 0, 30, 45, 60, 90, and 120 s. Oocyst viability was assessed by excystation using bile salts and trypsin while the cell culture foci detection method was used to assess infectivity. Results indicated that HHP inactivated C. parvum oocysts by at least 3.4 log10 after 30 s of treatment. No infectivity was detected in samples exposed to > or =60 s of HHP and >99.995% inactivation was observed. This study demonstrated that HHP efficiently rendered the oocysts nonviable and noninfectious after treatment at 5.5 x 10(8) Pa.  相似文献   

7.
The size and surface characteristics of a surrogate particle and Cryptosporidium parvum oocysts are important in determining the ability of the particle to mimic the behavior of C. parvum oocysts in filtration and particle transport experiments. The zeta potential, hydrophobicity, and filterability of a surrogate particle, 5 microm carboxylated latex microspheres, and oocysts were compared for a variety of solution conditions. C. pervum oocysts had a slightly negative zeta potential (-1.5 to -12.5 mV) at pH 6.7 over a wide range of calcium concentration (10(-6)-10(-1) M), while the fluorescent microspheres were more negatively charged under the same conditions (-7.4 to -50.2 mV). After exposure to 5 mg of C/L of Suwanee River natural organic matter (NOM), the ; potentials of both particles became significantly more negative, with the microspheres consistently maintaining a more negative zeta potential than the oocysts. Alum was able to neutralize the negative zeta potentials of both particles when in the presence of NOM, but nearly twice the dosage was required for the microspheres. NOM also affected the hydrophobicity of the particles by increasing the hydrophobicity of the relatively hydrophilic oocysts and decreasing the hydrophobicity of the relatively hydrophobic microspheres. A bench-scale filtration system removed less microspheres (40.3 +/- 1.5%) than oocysts (49.7 +/- 2.9%) when 0.01 M CaCl2 was supplied as coagulant. After preexposure to 5 mg of C/L of NOM, the removals of both particles declined significantly, and the removals of microspheres (13.7 +/- 1.5%) and oocysts (16.3 +/- 1.5%) were similar. Finally, the removal efficiencies of microspheres and oocysts in the presence of NOM increased to 69.3 +/- 3.5% and 67.7 +/- 6.4%, respectively, when alum was supplied as coagulant at the optimum dosage needed to destabilize the oocysts. These experimental results suggest that microspheres can be used to provide a conservative estimate of oocyst removal in filters containing hydrophilic negatively charged filter media.  相似文献   

8.
The success of any protocol designed to detect parasitic protozoa on produce must begin with an efficient initial wash step. Cryptosporidium parvum and Cyclospora cayetanensis oocysts were seeded onto herbs, lettuces and raspberries, eluted with one of four wash solutions and the recovered number of oocysts determined via fluorescent microscopy. Recovery rates for fluorescein thiosemicarbazide labeled C. parvum oocysts seeded onto spinach and raspberries and washed with de-ionized water were 38.4 ± 10.1% and 34.9 ± 6.2%, respectively. Two alternative wash solutions viz. 1M glycine, pH 5.5 and a detachment solution were tested also using labeled C. parvum seeded spinach and raspberries. No statistically significant difference was noted in the recovery rates. However, a wash solution containing 0.1% Alconox, a laboratory glassware detergent, resulted in a significant improvement in oocyst recovery. 72.6 ± 6.6% C. parvum oocysts were recovered from basil when washed with 0.1% Alconox compared to 47.9 ± 5.8% using detachment solution. Also, C. cayetanensis oocysts were seeded onto lettuces, herbs and raspberries and the recovery using de-ionized water were compared to 0.1% Alconox wash: basil 17.5 ± 5.0% to 76.1 ± 14.0%, lollo rosso lettuce 38.3 ± 5.5% to 72.5 ± 8.1%, Tango leaf lettuce 45.9 ± 5.4% to 71.1 ± 7.8% and spring mix (mesclun) 39.8 ± 0.7% to 80.2 ± 11.3%, respectively. These results suggest that the use of Alconox in a wash solution significantly improves recovery resulting in the detection of these parasitic protozoa on high risk foods.  相似文献   

9.
The efficacy of microwave heating on the viability of Cryptosporidium parvum oocysts and on the sporulation of Cyclospora cayetanensis oocysts for various periods of cooking times (0, 10, 15, 20, 30, and 45 s) at 100% power was determined. Cyclospora oocysts were stored in 2.5% dichromate at 23 degrees C for 2 weeks, and sporulation rates were then determined. The 4',6-diamidino-2-phenylindole and propidium iodide vital stain and the neonate animal infectivity assay determined Cryptosporidium oocyst viability. Cryptosporidium oocysts could be completely inactivated with as little as 20 s of cooking time, whereas Cyclospora sporulation was observed up to 45 s. Two of the examined microwave ovens were more effective at reducing sporulation and viability than the third one. Because of the variability of temperature achieved by the various ovens, cooking time was not an accurate parameter for parasite inactivation. Cryptosporidium oocysts could be inactivated only when temperatures of 80 degrees C or higher were reached in the microwave ovens.  相似文献   

10.
Cryptosporidium parvum oocysts have been found on the surface of vegetables in both developed and developing countries. C. parvum can contaminate vegetables via various routes, including irrigation water. This study investigated the effect of individual treatments of chlorine, blanching, blast freezing, and microwave heating, as well as combined treatments of chlorine and freezing, and chlorine and microwave heating on the viability of C. parvum oocysts inoculated on green peppers. The viability of the oocysts after the treatments was assessed using propidium iodide and a flow cytometer. Based on the propidium iodide staining, the chlorine treatments did not affect the viability of the oocysts. Blast freezing significantly inactivated 20% of the oocysts. Microwave heating and blanching significantly inactivated 93% of oocysts. Treatment with chlorine followed by blast freezing did not affect the viability of the oocysts significantly. Treatment with chlorine and microwave heating was significantly more effective than microwave heating alone and inactivated 98% of the oocysts. The study indicates that C. parvum oocysts are sensitive to heat and, to some extent, to blast freezing, but are resistant to chlorine. Therefore, the use of chlorine during vegetable processing is not a critical control point for C. parvum oocysts, and the consumption of raw or minimally processed vegetables may constitute a health risk as C. parvum oocysts can still be found viable on ready-to-eat, minimally processed vegetables.  相似文献   

11.
Cultured mussels (Mytilus edulis) were collected seasonally during one year from three sites on the Northwestern coastal area of Normandy (France). Flesh, gills and innerwater were examined for Cryptosporidium oocyst detection using immunomagnetic separation and immunofluorescence assay. Oocysts were present in all samples for all sites and seasons and flesh was the most contaminated part. Oocyst rates were apparently related with seasonal rain precipitation variations. Molecular analysis revealed that oocysts belonged to the species Cryptosporidium parvum (formerly genotype 2 or ). Oocyst infectivity was assessed by oral administration to suckling NMRI-mice, and developmental stages were observed in only one mouse infected with oocysts from one location. The detection of potentially infectious C. parvum oocysts of likely cattle-breeding origin in cultured edible mussels confirms their resistance to sea environments, and underlines the potential risk of food-borne infection. This work reports for the first time the presence of infectious Cryptosporidium oocysts in shellfish from France.  相似文献   

12.
Improving air quality by reducing ambient ozone (O(3)) will likely lower O(3) concentrations throughout the troposphere and increase the transmission of solar ultraviolet (UV) radiation to the surface. The changes in surface UV radiation between two control scenarios (nominally 84 and 70 ppb O(3) for summer 2020) in the Eastern two-thirds of the contiguous U.S. are estimated, using tropospheric O(3) profiles calculated with a chemistry-transport model (Community Multi-Scale Air Quality, CMAQ) as inputs to a detailed model of the transfer of solar radiation through the atmosphere (tropospheric ultraviolet-visible, TUV) for clear skies, weighed for the wavelengths known to induce sunburn and skin cancer. Because the incremental emission controls differ according to region, strong spatial variability in O(3) reductions and in corresponding UV radiation increments is seen. The geographically averaged UV increase is 0.11 ± 0.03%, whereas the population-weighted increase is larger, 0.19 ± 0.06%, because O(3) reductions are greater in more densely populated regions. These relative increments in exposure are non-negligible given the already high incidence of UV-related health effects, but are lower by an order of magnitude or more than previous estimates.  相似文献   

13.
No standard method is available for detecting protozoan parasites on foods such as soft fruit and salad vegetables. We report on optimizing methods for detecting Cryptosporidium parvum on lettuce and raspberries. These methods are based on four basic stages: extraction of oocysts from the foodstuffs, concentration of the extract and separation of the oocysts from food materials, staining of the oocysts to allow their visualization, and identification of oocysts by microscopy. The concentration and separation steps are performed by centrifugation, followed by immunomagnetic separation using proprietary kits. Oocyst staining is also performed using proprietary reagents. The performance parameters of the extraction steps were extensively optimized, using artificially contaminated samples. The fully developed methods were tested several times to determine their reliability. The method to detect C. parvum on lettuce recovered 59.0+/-12.0% (n=30) of artificially contaminated oocysts. The method to detect C. parvum on raspberries recovered 41.0+/-13.0% (n=30) of artificially contaminated oocysts.  相似文献   

14.
A model was developed to simultaneously assess Cryptosporidium parvum oocyst inactivation and bromate formation during ozonation of synthetic solutions in batch and flow-through reactors. The model incorporated 65 elementary chemical reactions involved in the decomposition of ozone and the oxidation of bromine species and their corresponding rate or equilibrium constants reported in the literature. Ozonation experiments were performed with a laboratory-scale batch reactor to evaluate the model with respect to the rate of ozone decomposition and bromate formation. The model was found to provide a good representation of experimental results when the ozone decomposition initiation reaction with hydroxide ion was assumed to produce superoxide radical instead of the alternatively proposed product hydrogen peroxide. The model was further developed to simulate the performance of a flow-through bubble-diffuser reactor with an external recirculation line. Each compartment of the reactor (bubble column and recirculation line) was assumed to behave as a plug flow reactor as supported by tracer test results, and an empirical correlation was used to represent the rate of ozone gas transfer in the bubble column. Model predictions of the performance of the flow-through ozone bubble-diffuser contactor were in good agreement with experimental results obtained for bromate formation and C. parvum oocyst inactivation under all conditions investigated. Additional model simulations revealed that hydrodynamic conditions had a more pronounced effect on C. parvum oocyst inactivation than on bromate formation. In contrast, pH had a strong effect on bromate formation without affecting the inactivation efficiency of C. parvum oocysts for a given level of exposure to ozone. These findings suggested that bromate formation could be minimized while achieving target inactivation levels for C. parvum oocysts by designing ozone reactors with hydrodynamic conditions approaching that of an ideal plug flow reactor and by lowering the pH of the target water.  相似文献   

15.
Foodborne parasites are characterized as being highly resistant to sanitizers used by the food industry. In 2009, a study reported the effectiveness of levulinic acid in combination with sodium dodecyl sulfate (SDS) in killing foodborne bacteria. Because of their innocuous properties, we studied the effects of levulinic acid and SDS at various concentrations appropriate for use in foods, on the viability of Cryptosporidium parvum and Encephalitozoon intestinalis. The viability of Cryptosporidium and E. intestinalis was determined by in vitro cultivation using the HCT-8 and RK-13 cell lines, respectively. Two Escherichia coli O157:H7 isolates were also used in the present study: strain 932 (a human isolate from a 1992 Oregon meat outbreak) and strain E 0018 (isolated from calf feces). Different concentrations and combinations of levulinic acid and SDS were tested for their ability to reduce infectivity of C. parvum oocysts (10(5)), E. intestinalis spores (10(6)), and E. coli O157:H7 (10(7)/ml) when in suspension. Microsporidian spores were treated for 30 and 60 min at 20 ± 2°C. None of the combinations of levulinic acid and SDS were effective at inactivating the spores or oocysts. When Cryptosporidium oocysts were treated with higher concentrations (3% levulinic acid-2% SDS and 2% levulinic acid-1% SDS) for 30, 60, and 120 min, viability was unaffected. E. coli O157:H7, used as a control, was highly sensitive to the various concentrations and exposure times tested. SDS and levulinic acid alone had very limited effect on E. coli O157:H7 viability, but in combination they were highly effective at 30 and 60 min of incubation. In conclusion, Cryptosporidium and microsporidia are not inactivated when treated for various periods of time with 2% levulinic acid-1% SDS or 3% levulinic acid-2% SDS at 20°C, suggesting that this novel sanitizer cannot be used to eliminate parasitic contaminants in foods.  相似文献   

16.
The prevalence, size, genome, and life cycle of Eimeria acervulina make this organism a good surrogate for Cyclospora cayetanensis, a protozoan that causes gastroenteritis in humans, including recent outbreaks in the United States and Canada associated with contaminated raspberries and basil. Laboratory studies of C. cayetanensis are difficult because of the lack of readily available oocysts and of infection models and assays. UV radiation and high-hydrostatic-pressure processing (HPP) are both safe technologies with potential for use on fresh produce. Raspberries and basil were inoculated with sporulated E. acervulina oocysts at high (10(6) oocysts) and low (10(4) oocysts) levels, and inoculated and control produce were treated with UV (up to 261 mW/cm2) or HPP (550 MPa at 40 degrees C for 2 min). Oocysts recovered from produce were fed to 3-week-old broiler chickens, which were scored for weight gain, oocyst shedding, and lesions at 6 days postinoculation. Oocysts exhibited enhanced excystation on raspberries but not on basil. Birds fed oocysts from UV-treated raspberries had reduced infection rates, which varied with oocyst inoculum level and UV intensity. Birds fed oocysts from UV-treated raspberries (10(4) oocysts) were asymptomatic but shed oocysts, and birds fed oocysts from UV-treated basil (10(4) oocysts) were asymptomatic and did not shed oocysts. Birds fed oocysts from HPP-treated raspberries and basil were asymptomatic and did not shed oocysts. These results suggest that UV radiation and HPP may be used to reduce the risk for cyclosporiasis infection associated with produce. Both treatments yielded healthy animals; however, HPP was more effective, as indicated by results for produce with higher contamination levels.  相似文献   

17.
The inactivation of Cryptosporidium parvum was investigated by the use of three different sonicators utilizing the squeeze-film effect, which may occur when ultrasound is irradiated into an extremely thin space and generate intensified pressure in the sample suspension. To expand from the small-scale horn-type sonicator to large-scale cylindrical or cleaning bath sonicators, the inactivation effectwas improved. In the case of the cylindrical sonicator (26.6 kHz, 30 W), 97% of the initial concentration of 2260 oocysts mL(-1) was inactivated at33 mL min(-1) (residence time of approximately 5.2 min). Hundreds of cubic meters of water can be treated per day at several kW using this sonicator. In addition, the simultaneous use of sonication and chlorination showed a beneficial effect on inactivation for C. parvum based on the evaluation of infectivity testing and morphological observation.  相似文献   

18.
Transport of Cryptosporidium parvum oocysts and microspheres in two disparate (a clay- and Fe-rich, volcanic and a temperate, humic) agricultural soils were studied in the presence and absence of 100 mg L(-1) of sodium dodecyl benzene sulfonate (SDBS), and Suwannee River Humic Acid (SRHA) at pH 5.0-6.0. Transport of carboxylate-modified, 1.8 μm microspheres in soil columns was highly sensitive to the nature of the dissolved organic carbon (DOC), whereas oocysts transport was more affected by soil mineralogy. SDBS increased transport of microspheres from 48% to 87% through the tropical soil and from 43% to 93% in temperate soil. In contrast, SRHA reduced transport of microspheres from 48% to 28% in tropical soil and from 43% to 16% in temperate soil. SDBS also increased oocysts transport through the temperate soil 5-fold, whereas no oocyst transport was detected in tropical soil. SRHA had only a nominal effect in increasing oocysts transport in tropical soil, but caused a 6-fold increase in transport through the temperate soil. Amendments of only 4 mg L(-1) SRHA and SDBS decreased oocyst hydrophobicity from 66% to 20% and from 66% to 5%, respectively. However, SDBS increased microsphere hydrophobicity from 16% to 33%. Soil fines, which includes clays, and SRHA, both caused the oocysts zeta potential (ζ) to become more negative, but caused the highly hydrophilic microspheres to become less negatively charged. The disparate behaviors of the two colloids in the presence of an ionic surfactant and natural organic matter suggest that microspheres may not be suitable surrogates for oocysts in certain types of soils. These results indicate that whether or not DOC inhibits or promotes transport of oocysts and microspheres in agricultural soils and by how much, depends not only on the surface characteristics of the colloid, but the nature of the DOC and the soil mineralogy.  相似文献   

19.
BackgroundThree major parts of sunlight consist of visible, ultraviolet and infrared radiation. Exposure to ultraviolet radiation (UVR) can result in a spectrum of skin and ocular diseases. UV-blocking contact lenses help provide protection against harmful UV radiation. We studied the ultraviolet and visible light rays transmission in some soft UV-blocking contact lenses.Material and methodsFour available tinted soft lenses (Acuvue Moist, Zeiss CONTACT Day 30 Air spheric, Pretty Eyes and Sauflon 56 UV) have been evaluated for UV and visible transmission. One-way ANOVA testing was performed to establish is there a statistically significant difference between the UV regions and visible spectra means for the contact lenses (α = 0.05).ResultsPretty Eyes, Zeiss CONTACT, Acuvue Moist and Sauflon 56 UV showed UV-B transmittance value of 0.65%, 10.69%, 1.22%, and 5.78%, respectively. Pretty Eyes and Acuvue Moist had UV-A transmittance values of 32% and 34%, Sauflon 56 UV and Zeiss CONTACT had transmittance values of 48% and 43%, respectively. All of the studied lenses transmitted at least 94.6% on the visible spectrum. The results of the one-way ANOVA statistical analysis show that a statistically significant difference exists within the group of contact lenses tested for the visible (p < 0.001), UV-B (p < 0.001) and UV-A (p < 0.001) portions of the spectrum (α = 0.05).ConclusionAcuvue Moist has the best UV-blocking property and also visible transmission between other tested contact lenses in this study.  相似文献   

20.
Cryptosporidium parvum is an enteric coccidian protozoan which produces an environmentally stable oocyst that is excreted in the feces of infected individuals. There have been ten documented water borne outbreaks in North America. If food or beverages were prepared from contaminated water, that food or beverage would also be a hazard. The objective of this study was to evaluate the survival of Cryptosporidium parvum in beverages. Viability of oocysts, as determined by morphology decreased over 24 h exposure in carbonated beverages. Uptake of vital dyes indicated a loss of >85% of oocyst viability in beer or cola stored at 4C. Loss of viability in tap water, orange juice or infant formula was ± 35%. It is likely that the low pH of the carbonated beverages was involved in the loss of oocyst viability and premature excystation of the sporozoites .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号