首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field experiments were conducted at 32 locations, chosen for their wide range in DTPA extractable Zn, to determine the critical deficiency level of Zn for predicting response of wheat to Zn application. Soil application of 5.6 kg Zn ha–1 significantly increased the grain yield in deficient soils. Soil extractable Zn was significantly related with per cent grain response and absolute grain yield. Both the graphical and statistical methods of Cate and Nelson indicated the critical level to be 0.75 mg kg–1 soil of DTPA extractable Zn. This level gave a predictability value of 82 per cent.  相似文献   

2.
Studies were conducted in ten non-calcareous arid brown soils (India) to determine the critical level of soil Zn for predicting response of wheat to zinc fertilization. The per cent mean response at 5 mg kg–1 added Zn varied from 1.3 to 51.4 with a mean value of 17.5 per cent over control in terms of grain yield (g pot–1). Further, Zn application resulted in significant increase in Zn concentration in various plant parts in all the soils irrespective of the initial Zn status. The critical level of Zn in soil and plant below which response to applied Zn may be expected was found to be 1.75 mg kg–1 for 0.1 N HC1 extractable soil Zn and 1.7 mg kg–1 for plant tissue Zn.  相似文献   

3.
The response of pearl-millet (Pennisetum americanum) grown on forty eight diverse soils to applied zinc fertilization was examined in a screenhouse experiment. The DTPA-extractable soil zinc ranged from 0.34 to 1.42 mg kg–1. In many of the soils yield was increased by the addition of zinc and there were large differences in the size of the response. The critical level of zinc in soil and plant — below which response to applied zinc may be expected — was determined by a graphical method. The values found were 0.65 and 18 mg kg–1, respectively. Bray's percent yield was positively and significantly related with both soil Zn (r = 0.88) and plant Zn (r = 0.72).  相似文献   

4.
Green house studies of 20 soils, having a range in DTPA extractable Mn, were made to determine the critical deficiency level of Mn for predicting response of barley to Mn application. Soil Mn was significantly related with both Bray's per cent dry matter yeild (r = 0.70**) and Mn uptake (r = 0.65**). Soil application of 25 mg Mn kg–1 soil significantly increased yield. Both graphical and statistical models of Cate and Nelson indicated the critical level to be 2.05 mg kg–1 soil of DTPA extractable Mn. The critical Mn deficiency level in 45 day barley plants was 18.6 mg kg–1 dry matter. The predictability of soil and plant critical Mn level was 91 and 80 per cent respectively.  相似文献   

5.
A greenhouse study with 15 soils, having a range in DTPA extractable Mn, was conducted to determine the critical deficiency level of Mn in Ustochrepts for predicting response of soybean to Mn application. Soil application of 10 mg Mn kg–1 soil significantly increased the dry matter yield in deficient soils. Soil Mn was significantly related with Bray's per cent yield (r = 0.72**) and Mn uptake (r = 0.75**). Both graphical and statistical models of Cate and Nelson indicated the critical level to be 3.3 mg kg–1 soil of DTPA extractable Mn. Critical Mn deficiency level in recently matured terminal leaflet blade at V6 growth stage in soybean plant was 22.0µg g–1 dry matter. The predictability of soil and plant critical Mn level was 87 per cent.  相似文献   

6.
Greenhouse studies of 14 soils, having a range in DTPA extractable Mn, were made to determine the critical deficiency level of Mn in ustochrepts for predicting response of green gram to Mn application. Soil Mn was significantly related with Bray's per cent dry matter yield (r = 0.68**). Soil application of 20 mg Mn kg–1 soil significantly increased the yield. Both graphical and statistical models of Cate and Nelson indicated the critical level to be 2.9 mg kg–1 soil of DTPA extractable Mn. The critical deficiency level in youngest matured terminal leaf (YML) of 40 day green gram plants was 19.0µg g–1. The predictability of soil and plant critical Mn level was 93 per cent.  相似文献   

7.
Wheat plants were grown to study the effect of Zn application in a screen house experiment involving 19 alkaline soils having a range of DTPA extractable Zn and widely divergent physical and chemical properties. Soil Zn was positively correlated with organic carbon, clay, Olsen's P and Bray's per cent yield (r = 0.54*, 0.67**, 0.54* and 0.84**) respectively. There was a significant increase in the leaf, grain and total dry matter yield of plants due to Zn fertilization but no such effect was obvious in stem. Concentration of Zn in different plant parts increased significantly with its application in all the soils irrespective of the initial Zn status. Statistical method indicated 0.65 mg kg–1 as the critical level of Zn in alkaline soils below which responses to Zn fertilization may be expected in case of wheat.  相似文献   

8.
A field experiment was conducted on an alkali soil to evaluate the direct and the residual effect of six levels of zinc i.e. 0, 2.25, 4.5, 9.0, 18.0 and 27.0 kg Zn ha–1 added either once to the first crop only or continuously to each crop on the growth, yield and chemical composition of plants grown in a rice-wheat cropping sequence. The soils were amended with gypsum applied at the uniform rate of 14 t ha–1. Zinc was supplied as zinc sulphate. Application of zinc at the rate of 2.25 kg ha–1 to both rice and wheat crops or an annual application of 4.5 kg Zn ha–1 only to rice was found optimum for rice-wheat sequence. Higher zinc applications increased the availability of zinc in the soil and its content in the plants but did not increase crop yield. DTPA extractable zinc build up was more for zinc applied at the rate of 2.25 kg ha–1 to each crop compared to a single zinc application of equivalent amount. Results of these studies have shown that continuous Zn application up to 27 kg Zn ha–1 to each crop did not induce nutrient imbalances and had no adverse effect on crop yield.  相似文献   

9.
To find critical tissue levels of Zn for wheat, and to evaluate various chemical extractants, a screen-house experiment was conducted on 21 diverse soils representing semi-arid regions in Haryana State, India. The extractants differed in the amounts of Zn extracted and the order was: 0.1 N HC1 > EDTA-NH4OAc > EDTA-(NH4)2CO3 > DTPA + CaCl2. The amounts (mg kg–1) of extractable Zn associated with a yield reduction of 20% were: DTPA + CaCl2, 0.60; EDTA — (NH4)2CO3, 0.80; EDTA-NH4OAc, 0.92 and 0.1 N HCl, 1.20. The corresponding critical Zn concentration in ten weeks old plants was found to be 17 mg gm–1. The DTPA + CaCl2 method gave the best correlation (r = 0.85) between extracted Zn and Bray's per cent yield. It is recommended for assessing Zn status of soils of semi-arid region.  相似文献   

10.
Information on the fate and distribution of surface-applied fertilizer P and K in soil is needed in order to assess their availability to plants and potential for water contamination. Distribution of extractable P (in 0.03 M NH4F + 0.03 M H2SO4 solution) and exchangeable K (in neutral 1.0 M ammonium acetate solution) in the soil as a result of selected combinations of 30 years (1968–1997) of N fertilization (84–336 kg N ha–1), 10 years of P fertilization (0–132 kg P ha–1), and 14 years of K fertilization (0 and 46 kg K ha–1) was studied in a field experiment on a thin Black Chernozem loam under smooth bromegrass (Bromus inermis Leyss.) at Crossfield, Alberta, Canada. Soil samples were taken at regular intervals in October 1997 from 0–5, 5–10, 10–15, 15–30, 30–60, 60–90 and 90–120 cm layers. Soil pH decreased with N rate and this declined with soil depth. Increase in extractable P concentration in the soil reflected 10 years of P fertilization relative to no P fertilization, even though it had been terminated 20 years prior to soil sampling. The magnitude and depth of increase in extractable P paralleled N and P rates. The extractable P concentration in the 0–5 cm soil layer increased by 2.2, 20.7, 30.4 and 34.5 mg P kg–1 soil at 84, 168, 280 and 336 kg N ha–1, respectively. The increase in extractable P concentration in the 0–15 cm soil depth was 1.5 and 12.8 mg P kg–1 soil with application of 16 and 33 kg P ha–1 (N rate of 84 N ha–1 for both treatments), respectively; and it was 81.6 and 155.2 mg P kg–1 soil with application of 66 and 132 kg P ha–1 (N rate of 336 N ha–1 for both treatments), respectively. The increase in extractable P at high N rates was attributed to N-induced soil acidification. Most of the increase in extractable P occurred in the top 10-cm soil layer and almost none was noticed below 30 cm depth. Surface-applied K was able to prevent depletion of exchangeable K from the 0–90 cm soil, which occurred with increased bromegrass production from N fertilization in the absence of K application. As only a small increase of exchangeable K was observed in the 10–30 cm soil, 46 kg K ha–1 year–1 was considered necessary to achieve a balance between fertilization and bromegrass uptake for K. The potential for P contamination of surface water may be increased with the high N and P rates, as most of the increase in extractable P occurred near the soil surface.  相似文献   

11.
Field experiments were conducted at Al-Qatif area in the eastern region of Saudi Arabia to study the status and availability of B under B fertilization regime in three types of calcareous soils and to evaluate the response of two alfalfa varieties, Hassawi (local variety) and Hyden (american variety), to increasing levels of added B.Boron was applied at 7 rates as Na2B4O7.10H2O. Four cuttings were taken from each site at different intervals. Data showed that extractable B by hot-water and NH4HCO3-DTPA (8 days after borax application) was significantly (p <0.001) affected by soil type and B applications. The amount of B recovered by hot-water from the three soils, 200 days after borax application, was in the following order: sandy loam > sandy clay loam > clay loam.Total dry matter of alfalfa (4 cuttings) was significantly (p <0.05) affected by soil type, borax application rates and alfalfa variety.The critical level of B in plant as determined by Cate and Nelson analysis, ranged from 148 to 652 mg kg–1 dry matter for Hassawi cultivar and 138 to 521 mg kg–1 for Hyden cultivar in the first harvest. However, the upper critical levels for the 2nd, 3rd and 4th harvests were 800, 875 and 935 mg B kg–1 dry matter for Hassawi and 603, 723 and 812 mg B kg–1 for Hyden varieties, respectively. Nevertheless, the lower critical levels for 2nd, 3rd and 4th harvests ranged from 148 to 153 mg B kg–1 dry matter for Hassawi and 138 to 142 mg B kg–1 for Hyden.  相似文献   

12.
Five field experiments involving P application rates from 0 to 66 kg P ha–1 were conducted on irrigated wheat at Tandojam, Pakistan. The soils belonged to two great soil groups, Torrifluvent and Camborthid. All soils were calcareous. Olsen-P contents ranged from 3.5 to 6.3 mg P kg–1. Phosphate sorption curves were developed for soils from control (no P) plots at each site. Concentrations of P in solution established by fertilization in the field as estimated from the sorption curves ranged from 0.008 to 0.16mg P L–1. Actual grain yields were converted to relative grain yields and plotted against corresponding concentrations of P in solution. Yield response to P application was obtained in each experiment. Control plot yields ranged from 57 to 89% of maximum yield of respective experiments. Phosphorus requirements of wheat were 0.032 mg L–1 for 95% yield as determined from a composite yield response curve. Predicted quantities of P required to attain 0.032 mg P L–1 ranged from 18 to 29 kg P ha–1. The results of the study suggest that the P sorption approach can be used as a rational basis for making P fertilizer recommendations for various soil-crop combinations.  相似文献   

13.
Little attention has been devoted to calibrating the soil tests for P in the field for crops grown under rainfed conditions in different soil types. Field experiments were conducted during the 1990 rainy season (June-September) at the ICRISAT Center, Patancheru (near Hyderabad), India on nearby Vertisol and Alfisol sites having a range in extractable P, for establishing relationships between extractable P and sorghum yield.In the Vertisol, 90% relative grain yield of sorghum was obtained at 2.8 mg kg–1 Olsen extractable P while in the Alfisol, 90% relative grain yield was achieved at 5.0 mg P kg–1 soil. These results suggest that a single critical limit of available P does not hold true for grain sorghum in the two soil types under similar agroclimatic conditions and that the critical limit is lower for the clayey Vertisol than the sandy Alfisol.  相似文献   

14.
An understanding of the influence of soil management practices on the distribution, form and solubility of trace metals in soils is required to formulate appropriate guidelines for the applications of organic manures and inorganic fertilizers for sustainable soil fertility and environmental protection. The distribution, forms and solubility of Cu were investigated in a savanna soil under long-term cultivation and varying management practices which included fertilization with NPK, farmyard manure (FYM), NPK+FYM and a control which received neither NPK nor FYM for 50 years. Total Cu varied between 5 and 13 mg kg–1. Long-term application of FYM and FYM+NPK significantly increased DTPA extractable Cu in the surface horizon, and in the subsurface horizon in FYM fertilized fields. Averaged across the sampling depths, cultivation and management history did not affect the concentration of DTPA extractable Cu, water-soluble Cu, organically complexed Cu and residual Cu. But fertilization with FYM and FYM+NPK significantly increased organically complexed Cu in the surface layer as compared to NPK fertilization. Solubility equilibria studies indicated that Cu2+ activities in soil solution approached an apparent equilibrium with cupric ferrite (CuFe2O4), suggesting that the control on Cu2+ solubility was either a CuFe2O4 or a Cu solid with solubility similar to cupric ferrite. The soil management practices involving combined application of inorganic fertilizers and farmyard manure did not seem to pose any risk of inducing Cu deficiency, but sole application of inorganic NPK poses such a risk.  相似文献   

15.
Data on the responses of micronutrients in definable soil fractions to cultivation and management are required to design judicious fertilization practices to improve soil fertility in the savanna. Iron and manganese fractions are particularly sensitive to cultivation and management practices. The objectives of this study were to determine the sizes and changes in Fe and Mn fractions in a savanna Alfisol cultivated for 50 years and fertilized with (i) NPK, (ii) farmyard manure (FYM), (iii) FYM + NPK, (iv) a control plot, and (v) a natural site adjacent to the experimental field. The mean concentration of total Fe (FeT) ranged from 9.4 g kg–1 in the surface layer to 45 g kg–1 in the subsurface layer, whereas total mangenese (MnT) concentration ranged from 79 mg kg–1 in the surface layer to 279 mg kg–1 in the subsurface layer. The distribution of FeT followed the distribution of clay in the soil profile across the field. The distribution of MnT did not, however, follow the characteristic depth distribution of clay as observed for FeT, suggesting that Mn movement and distribution in this soil might be independent of clay movement and distribution. The concentrations of DTPA extractable Fe and Mn were much higher than the critical levels delineated for soils. Application of FYM increased the concentration of amorphous oxide bound Fe over the natural site and reduced the concentration of residual or inextractable Fe in the soil. Similarly, fertilization with FYM reduced the concentration of residual Mn, and increased the exchangeable, amorphous oxide bound and reducible Mn compared to the natural site. It seems that sole application of FYM or application in combination with NPK rather than NPK alone can mobilize non-labile Mn and Fe sources into labile and plant available forms of Fe and Mn in a savanna Alfisol.  相似文献   

16.
Field experiments were conducted in zinc-deficient sodic soil to study the effect of levels and methods of zinc fertilization on yield, concentration and uptake of zinc by rice. Zinc was incorporated in the soil at the rate of 0, 5.6, 11.2 and 22.4 kg Zn per ha as zinc sulfate; sprayed on the plants at 1% and 2% zinc sulfate solution; and roots of rice seedlings were dipped in 2% and 4% ZnO suspensions in water. Grain yield, zinc content and its uptake increased in all the experiments up to 22.4 kg Zn per ha. Soil applied zinc was significantly correlated with yield of rice (r = 0.80**) and zinc uptake (r = 0.89**). Zinc content in 45-day old plants gave a significantly higher correlation with grain yield (r = 0.84**) than the zinc content of rice straw and grain at maturity. Roots of rice seedlings dipped in 2% or 4% zinc oxide suspension in water were not only comparable with soil application of Zn at 5.6 and 11.2 kg Zn per ha, but also proved to be more economical for sodic soils showing moderate zinc deficiency.  相似文献   

17.
The phosphate sorption isotherms are needed to explain differential plant responses to P fertilization in soils. Laboratory and greenhouse experiments investigated the use of phosphorus sorption isotherms in relation to P fertilizer requirement of wheat in ten benchmark soils of Punjab, India. The modified Mitscherlich Equation (3) was used to describe plant response observed in different soils. Maximum obtainable yield (MOY) ranged from 11.6 g pot–1 in Gurdaspur (I) sandy clay loam to 7.0 g pot–1 in Nabha sandy clay loam. Response to P applied @ 25 mg P kg–1 soil was maximum (77%) in Bathinda sand and minimum in Chuharpur clay loam (33%). The response curvature varied from 3.74 × 10–2 in Nabha sandy clay loam to 4.43 × 10–2 in Kanjli sandy loam. The soil solution P required to produce optimum yield (90% MOY) varied from 1.61 µg ml–1 in Bathinda sand to 0.10 µg ml–1 in Sadhugarh clay. Dry matter yield obtained at 0.2 µg ml–1 solution P concentration ranged from 55% in Bathinda sand to 85% of MOY in Gurdaspur (II) clay loam. At the same solution P concentration (0.1 µg P ml–1), dry matter yield was 91% in Sadhugarh clay, 80% in Gurdaspur (II) clay loam and, 43% of MOY in Bathinda sand and eventually coincided with the decreasing maximum buffer capacity (MBC) in these soils. At the same level of sorbed P (100 mg P kg–1 soil) the yield was observed to be inversely proportional to MBC. The study, therefore, concludes that, soils should be grouped according to their P sorption characteristics and MBC before using critical soil solution P as a criterion for obtaining optimum yields.  相似文献   

18.
Surface runoff accounts for much of the phosphorus (P) input to and accelerated eutrophication of the fresh waters. Several states have tried to establish general threshold soil P levels above which the enrichment of surface runoff P becomes unacceptable. However, little information is available on the relationship between soil and surface runoff P, particularly for the northeastern United States. Further, threshold soil P criteria will be of limited value unless they are integrated with site potential for runoff and erosion. In response, the Natural Resource Conservation Service (NRCS) developed a P Index (PI), which ranks the vulnerability of fields as sources of P loss in runoff, based on soil P, hydrology, and land use. This study evaluated the relationship between soil and surface runoff P in a study watershed in central Pennsylvania. The relationship was then incorporated into the (PI), and its impact on the identification of critical source areas within the watershed was examined. Using simulated rainfall (6.5 cm h–1 for 30 min), the concentration of dissolved P in surface runoff (0.2–2.1 mg l–1) from soils was related (r 2=0.67) to Mehlich-3 extractable soil P (30–750 mg kg–1). Using an environmentally based soil P threshold level of 450 mg kg–1 determined from the soil-runoff P relationship, the PI identified and ranked areas of the watershed vulnerable to P loss. The vulnerable areas were located along the stream channel, where areas of runoff generation and areas of high soil P coincide, and where careful management of P fertilizers and manure should be targeted.  相似文献   

19.
Two field experiments were conducted on Mn-deficient soils to evaluate the efficiency of rates, methods and time of MnSO4.H2 O application for wheat. Manganese sulphate was broadcast and mixed in soils at the rate of 5 to 50kg Mn ha–1 before seeding and 10 to 40 kg Mn ha–1 as top dress at 28 days — just before first irrigation. Three sprays of 1% MnSO4·H2O unneutralised solutions were applied, the first at 26 days — 2 days before first irrigation and the others afterward at weekly intervals. Both the methods caused a significant and marked increase in grain yield. Three foliar sprays were as effective as soil applications of 20 to 40 Kg Mn ha–1 before seeding. The difference in grain yield resulting from soil applications of Mn before seeding and applications at the first irrigation was not significant. The DTPA-Mn status of 20 fields, selected on the basis of varying degree of Mn deficiency, was related to grain yield (r = 0.77**). Also grain yield of all the experiments had a significant correlation with Mn content of grain (r = 0.55** to 0.82**) and straw (r = 0.77** to 0.82**). The critical limits calculated by statistical method were 1.25, 2.18 and 3.5 mg Mn kg–1 soil for severe deficiency, deficiency and latent deficiency respectively for wheat.  相似文献   

20.
The effects of lanthanum on nitrification and ammonification in three Chinese soils were evaluated through an incubation experiment. Soils were collected from experimental plots under rice/rape rotation in Yingtan, Jiangxi province (red soil), under rice/wheat rotation in Wuxi, Jiangsu province (paddy soil), and under corn/wheat rotation in Fengqiu, Henan province (Fluvo-aquic soil). Soil nitrification was stimulated slightly by La at lower concentrations, and the stimulation rate reached about 20% in red soil at 150 mg La kg–1 dry soil, and 14% in fluvo-aquic soil at 300 mg La kg–1 dry soil. When more La was added in soils, nitrification was inhibited, with a maximum inhibition rate of 42, 44 and 66% in red soil, fluvo-aquic soil, and paddy soil, respectively. Soil ammonification was not significantly different between control and up to 600 mg La kg–1 dry soil in red soil, but it was significantly reduced in doses of 900 and 1200 mg La kg–1 dry soil. Significant reduction in soil ammonification was also found in doses from 60 to 1200 mg La kg–1 dry soil except for 600 mg La kg–1 dry soil in fluvo-aquic soil. In contrast the ammonification in paddy soil was strongly stimulated by La, reaching about 25 times that of control at 900 mg La kg–1 dry soil. We assumed that application of La accelerates the transformation of nitrogen in soils at low dosage, and the currently applied dosage in agriculture in China cannot inhibit soil nitrification and ammonification even after long term successive application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号