首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用有限元模型研究温度与荷载共同作用下的钢管混凝土短柱的荷载-变形关系。该模型用来模拟一系列各种温度和力学加载条件下的钢管混凝土短柱试验,包括高温测试、常温下构件残余强度测试,以及无初始荷载的ISO-834标准温度下的构件测试。预测结果以及试验结果的对比表明:模型可以准确预测构件的荷载-变形关系。然后采用该有限元模型分析在具有初始荷载、加热和制冷条件下完全加载过程中的钢管混凝土短柱的性能,以观察构件横截面的应力分布和各个加载阶段的应力发展情况。所有构件在制冷过程之后都加载至极限强度,利用一系列参数对其残余应力进行了分析。结果发现:在温度和荷载共同作用下的构件极限强度,要比只有温度作用而无初始荷载的构件极限强度略低,但是在极限强度时,前者的最大应变显著增加。  相似文献   

2.
为研究长期荷载作用对带脱空缺陷钢管混凝土柱受力性能的影响,以脱空类型、脱空率和长期荷载比为主要参数,对长期荷载作用下带脱空缺陷钢管混凝土短柱的变形特性和承载力进行了试验研究。试验结果表明:在长期荷载作用下,与普通无脱空缺陷钢管混凝土柱类似,脱空缺陷钢管混凝土柱徐变系数终值的上限值为0.9;长期荷载比大的脱空缺陷钢管混凝土柱较长期荷载比小的脱空缺陷钢管混凝土柱的承载力略大。采用有限元分析软件ABAQUS,对考虑长期荷载作用影响时脱空构件的受力性能进行分析,有限元计算结果和试验结果吻合良好。利用验证过的有限元模型,系统地分析了长细比、含钢率、钢管屈服强度、混凝土强度、长期荷载比、脱空率和荷载偏心率等参数对长期荷载作用下带脱空缺陷钢管混凝土柱的承载力影响规律。结果表明,混凝土脱空缺陷对考虑长期荷载作用的承载力影响系数的不利影响小于1.5%;现有的考虑长期荷载影响的普通钢管混凝土柱的设计方法可用于预测带脱空缺陷钢管混凝土柱的承载力。  相似文献   

3.
A finite element method (FEM) program is developed and used in this paper to analyse the behaviour of concrete-filled steel tubular (CFST) columns during the entire stage of fire exposure, including: loading at ambient temperature, heating, cooling to the ambient temperature and post-fire loading to failure. The emphasis of this paper is on CFST column behaviours during the cooling and post-fire stages because these behaviours are affected by the loading and heating histories, but they have not previously been studied. This paper will present the mechanical property models for these different loading and heating stages. To validate the FEM program, some experimental data, including fire resistance, axial deformation and ultimate strength of CFST columns are compared and it is found that the FEM program can predict the test results with good accuracy. Using the FEM program, a parametric study is then conducted to investigate the influences of ambient temperature loading and heating history on the cooling and post-fire behaviours of CFST columns. It is concluded that various parameters (such as load ratio and elevating temperature time ratio etc.) affect the residual strength of CFST columns severely. Finally, this paper proposes a set of formulas which can be used to predict the residual strength of CFST columns after going through the whole fire exposure process.  相似文献   

4.
A nonlinear 3-D finite element analysis (FEA) model was developed to predict the behavior of eccentrically loaded concrete encased steel (CES) columns subjected to ISO-834 standard fire including heating and cooling phases. The finite element model has been validated against published tests conducted at elevated temperatures. Comparisons between the predicted results and the test results show that this model can accurately predict the behavior of CES columns under fire. The FEA model was then used to investigate the typical temperature-time curve and mid-height lateral deformation-time curve of eccentric compression CES columns in a complete loading history including initial loading, heating and cooling. It is shown that the temperature delay is obvious at the inner layers of concrete. The fire resistance of a CES column should be checked for the full process of fire exposure until temperatures everywhere in the column start to decrease. The lateral deformation of the column still gradually increases during the cooling phase and the column may fail during that phase. There is a large residual deformation after the fire exposure. Furthermore, the variables that influence the behavior of the CES columns under fire were investigated in parametric studies. It is found that the main parameters which influence the lateral deformation-time curve of the column during the full process of fire exposure are load ratio, slenderness ratio, duration time, depth to width ratio and steel ratio, and the main parameters which influence the residual deformation ratio of the column after fire are load ratio, duration time, cross-sectional depth and steel ratio.  相似文献   

5.
This paper investigates the behaviour of concrete filled steel tubular (CFST) stub columns subjected to eccentric partial compression. Twenty-eight specimens were tested and presented. The main parameters in test program include: (1) section type: circular, square and rectangular; (2) load eccentricity ratio (including uniaxial and biaxial loading): from 0 to 0.4; and (3) shape of the loading bearing plate (BP): circular, square, strip and rectangular. The test results indicated that, similar to the corresponding fully loaded CFST stub columns under eccentric loading, CFST stub columns under eccentric partial compression have generally reasonable bearing capacity and favorable ductility. A finite element analysis (FEA) model for CFST stub columns under eccentric partial compression is developed and the predicted performances are validated through measured results. The FEA model is then used to investigate the mechanisms of such composite columns further.  相似文献   

6.
This paper reports an investigation into the behaviour of high strength SCC (self-consolidating concrete) filled steel tubular stub columns exposed to standard fire. A series of tests were carried out to obtain the temperature distribution, axial deformation, limiting temperature of steel and fire endurance of the SCC filled steel tubular stub columns. In addition, a finite element analysis (FEA) model was proposed and used to simulate the fire behaviour of the columns. In the FEA modeling, a sensitivity study was conducted to determine the concrete fracture energy and the contact property of the steel and concrete interface. The verified FEA model was used to analyse the structural behaviour of the columns under fire exposure, such as strain, stress, the load sharing between the steel tube and concrete and local buckling of the steel tube, to gain an insight into the failure mechanism of the columns.  相似文献   

7.
This paper describes a series of new compression and bending tests carried out on concrete filled steel tubes (CFST) after exposure to the ISO-834 standard fire. A theoretical model that has been previously developed is used to predict the post-fire load versus deformation relationships of CFST stub columns and beams. The predicted curves of load versus deformation are in good agreement with the new test results.The previously developed theoretical model had been used to investigate the influence of a number of important parameters on the residual ultimate strength and flexural stiffness of the composite sections and the results of the parametric studies were used to develop formulas for calculating the composite section residual ultimate strength under axial compression or flexural bending and the composite section residual flexural bending stiffness. In these formulas, the ambient temperature compression resistance, bending moment capacity and initial flexural bending stiffness of the composite section should be calculated using an existing design code. In this paper, these formulas are applied to the new test data to assess the suitability of using several different design codes: AIJ-1997, AISC-LRFD-1999, BS5400-1979, DBJ13-51-2003 and EC4-1994.  相似文献   

8.
This paper presents the experimental results of three concrete filled steel tube (CFST) column to steel beam joints with reinforced concrete (RC) slabs under combined loading and fire including the heating and cooling phases. The test parameters include heating time and thickness of the fire protection material. Temperatures and deformations of the joint specimens during the heating, cooling and post-fire phases were measured. A finite element analysis (FEA) model to simulate the action of a CFST column to steel beam joint under combined loading and fire is developed. The FEM model was verified by the experimental results. The FEA model is then used to analyse the temperature distribution in the heating and cooling phases. The moment versus relative rotation angle between the CFST column and the beam under combined loading and fire including the heating and cooling phases is also discussed.  相似文献   

9.
This paper presents a numerical investigation on the post-fire behaviour of concrete filled steel tubular (CFST) column to restrained steel beam joint. An entire loading and fire phase, including ambient loading, heating with constant loads, cooling with constant loads and post-fire loading, was employed in the numerical analysis, and a finite element analysis (FEA) model was built to simulate the behaviour of CFST column to axially and rotationally restrained steel beam joints with external diaphragm connections under the entire loading and fire phase. For validation, the proposed modelling method was used to predict the test results of CFST columns and joints in fire and post-fire. The comparison demonstrates that the accuracy of the proposed FEA model is acceptable. Afterwards, the FEA model was used to analyse the mechanics characteristics of CFST column to restrained steel beam joints in the entire loading and fire phase. Based on the numerical analysis, the joint moment versus relative rotation angle relationship in the entire loading and fire phase was addressed, and the residual joint strength index and stiffness index were defined to evaluate the post-fire performance of joints. Finally, simplified calculating formulas were proposed to calculate the two indexes, which provide a simply and feasible method to evaluate the post-fire performance of external diaphragm joints in the CFST column - steel beam framed structure.  相似文献   

10.
为了解不同受火条件下型钢混凝土柱截面温度场,同时考察受火方式、火灾荷载比、荷载偏心率、约束刚度比等参数对型钢混凝土柱抗火性能的影响,进行了14个包括四面、三面、相对两面、相邻两面、单面受火条件下轴向约束型钢混凝土柱的抗火性能试验。试验结果表明:受火面数量、受火方位对 型钢混凝土柱截面温度分布有显著影响,升温时间相同时,四面受火、三面受火、两面受火、单面受火试件截面相同位置处所经历的最高温度依此降低;距试件表面距离相同时,型钢翼缘外侧受火面温度比型钢腹板外侧受火面温度略高。受火方式、火灾荷载比、荷载偏心率、约束刚度比对升降温全过程下型钢混凝土柱轴向变形和轴力发展有显著影响,试件受热膨胀变形和降温压缩变形随受火面数的增多而增大;轴向膨胀变形随火灾荷载比的增大而减小,随荷载偏心率的增大而增大;荷载比越大,试件由轴向拉伸状态转为轴向压缩状态的时间越短,压缩程度越高。定义试验实测轴力与初始施加轴力的比值为轴力变化系数,四面受火、三面受火、两面受火、单面受火时,试件升降温后期的轴力变化系数依此递减,轴力变化系数峰值随荷载偏心率和轴向约束刚度比的增大而增大,随火灾荷载比的增大而减小。  相似文献   

11.
为了研究内配型钢矩形钢管混凝土轴压短柱在生命周期内的受力机理,利用有限元软件ABAQUS建立该类短柱的计算模型,并与已有的相关试验结果进行对比。模型中将钢管初应力和长期荷载作为生命周期内的主要因素进行考虑,分析了内配型钢矩形钢管混凝土轴压短柱生命周期内的荷载-变形全过程曲线、跨中截面各部件纵向应力分布和钢材与混凝土之间的相互作用力; 考察了初应力系数、长期荷载比和含钢率对构件承载力和变形的影响规律。结果表明:考虑钢管初应力和长期荷载作用的内配型钢矩形钢管混凝土轴压短柱极限承载力与一次加载情况下相比变化不明显,但极限承载力对应的纵向应变增长84.2%; 在长期持荷阶段,核心混凝土发生卸载现象,其承担的荷载下降了30%左右,再加载阶段又继续承载; 钢管与混凝土之间的接触应力在中截面处最大,沿构件长度方向逐渐向两端减小; 随着钢管含钢率增大,构件极限承载力增大,变形减小,而型钢含钢率对构件变形影响较小; 随着初应力系数和长期荷载比的增大,构件纵向变形增大。  相似文献   

12.
承受荷载的钢结构在火灾下可发生明显的蠕变变形,钢结构中的焊接残余应力在火灾下也会一定程度地释放,因而高温蠕变变形和残余应力会对钢柱的耐火性能产生影响.为了准确地对高强度Q460钢柱进行抗火设计,有必要定量分析高温蠕变和残余应力释放对钢柱承载力的影响.采用电炉对2根焊接H形Q460钢柱进行耐火试验,得到无保护Q460钢柱...  相似文献   

13.
This paper experimentally investigated the effects of pre-load and cooling phase on the residual strength and stiffness of concrete-filled steel tubular (CFT) stub columns which were heated and cooled down to room temperature under sustained axial load. CFT stub columns were axially loaded and heated to specified high temperatures in a specially built electrical furnace. After the specimens cooled down to room temperature while the axial load was kept constant, the stub columns were loaded to failure. The test results showed that the mechanical behaviour of the fire-damaged CFT stub columns with pre-load was obviously different from those without pre-load. The axial load level and the high temperature exposure had more significant effects on the stiffness of CFT stub columns than the residual strength. The sustained pre-load led to significant residual deformations of CFT stub columns during the cooling phase. Based on the test results, it is recommended that the effects of sustained axial loads and fire cooling phase should be taken into consideration in assessing the fire-damaged CFT columns.  相似文献   

14.
This paper presents the results of static loading (SL) and variable repeated loading (VRL) tests on concrete filled steel tubular (CFST) columns. Assessment of the columns was based on its length, concrete strength and load eccentricity. The column behaviour (with and without filling) from the tests was studied. The ultimate strength of the columns subjected to VRL reduced by up to 16% after undergoing a number of load cycles. The incremental collapse (IC) limit was found to lie between 70% and 88% of the static collapse load for CFST columns. The deformations at IC limit were significant and could affect practical designs. The theoretical strengths of the stub and long columns tested are determined on the basis of building code 318 of the American Concrete Institute, and compared with the test results. The squash load equation of the code was found to underestimate the nominal strength of short composite columns.  相似文献   

15.
In this paper is presented an experimental investigation of the effects of preload and cooling phase on the residual strength, stiffness and ductility of reinforced concrete stub columns which were heated and cooled down to room temperature under sustained axial load. Reinforced concrete stub columns were axially loaded and heated to designed temperatures in a specially built electrical furnace. After the specimens cooled down to ambient temperature with the axial loads kept constant, the stub columns were loaded to failure. The sustained preload led to significant residual deformations of reinforced concrete stub columns during the cooling phase. The test results showed that the mechanical behaviour of the fire-damaged reinforced concrete stub columns with preload was remarkably different from those without preload. The sustained axial loads resulted in obviously increased strength and stiffness during the loading phase, but reduced stiffness and deteriorated ductility in the unloading phase. Based on the test results, it is recommended that the effects of sustained axial loads during the fire and cooling phase should be taken into consideration in assessing the fire-damaged reinforced concrete columns.  相似文献   

16.
This paper presents an experiment study of the post-fire behavior of five SRC columns under combination of axial eccentrical loading and fire. The experiment phenomena and mechanical response of the SRC column specimens during experiment, specifically loading, heating, cooling and post-fire loading were observed. The residual load bearing capacity, failure modes and vertical deformation were studied. With the test program, the effects of parameters such as the load ratio, the fire duration time and the steel ratio were studied. It is shown that the effects of temperature delay become more obvious with the increase of the depth from the heated surface. Some of the SRC column specimens failed during the cooling phase. For other specimens residual deformations were observed when the furnace temperature decreased to ambient temperature. The influence of some parameters including the load ratio, the fire duration time and the steel ratio on the post-fire load bearing capacities was discussed. It can be concluded that the residual load bearing capacity of the SRC columns decreases with the increase of the fire duration time and the load ratio, and increases with the increase of the steel ratio. Finally, a finite-element analysis model was developed to simulate the behavior of the tested SRC columns.  相似文献   

17.
设计了3根截面尺寸、长度均相同的Q550高强度钢柱,其中两根受到轴向约束,并对其进行了恒载作用下升温、降温的受火全过程试验,以及自然降温至室温后的轴压剩余承载力试验,对未受火的钢柱进行了常温下的极限承载力试验。研究了高温试验中钢柱的轴向位移-温度和中点侧向挠度-温度关系、极限承载力试验中钢柱的轴力-轴向位移和轴力-柱中点侧向挠度关系,并进行了有限元模拟。试验以及有限元模拟分析显示,若约束钢柱在高温过程中发生屈曲,则降温后钢柱会有明显的残余弯曲变形,并且柱中截面会产生比初始残余应力更为显著的残余应力,从而显著降低钢柱的剩余承载力和轴向刚度。试验结果与有限元分析结果吻合较好,验证了有限元分析模型的有效性。  相似文献   

18.
采用多尺度建模方法建立了考虑钢材高温蠕变的三层三跨钢梁-钢管混凝土柱平面框架火灾全过程热-力耦合数值模型,研究不同火灾工况下平面框架经历常温加载、恒载升温、降温和火灾后等不同受火阶段的力学性能。在与已有试验对比验证的基础上,分析了框架经历升温和降温后受火钢梁跨中挠度和受火柱顶轴向变形与升降温时间关系,计算了火灾后框架底层柱底水平荷载P-框架顶层水平位移Δ关系曲线。研究结果表明:钢材的高温蠕变是钢材在热力耦合作用下应变的一部分,计算过程中需要考虑其影响;钢梁在升温过程中由于高温膨胀对框架柱产生外推作用,而进入降温阶段后钢梁产生明显的收缩变形;框架底层三跨同时受火时钢梁跨中挠曲变形最大,受火初期柱顶轴向压缩变形小于膨胀变形;受火后框架水平承载力和初始刚度均随受火区域的增大呈下降趋势。  相似文献   

19.
Q460高强度钢材焊接H形截面弱轴压弯柱承载力试验研究   总被引:1,自引:0,他引:1  
为了研究高强度钢材中厚板焊接H形截面压弯柱的承载力,采用国产Q460高强度钢材11 mm、21 mm中厚板制作了6个焊接H形截面压弯柱,试件截面自由外伸翼缘板宽厚比分别为7、5、3,长细比分别为40、55、80。通过对Q460低合金高强度钢材的材性测试、3种焊接截面残余应力测试、各试件初始几何缺陷测量及承载力试验,进行了H形截面弱轴压弯构件整体失稳承载力的试验研究,并与采用GB 50017-2003《钢结构设计规范》进行计算的承载力对比;同时以理想弹塑性模型,综合考虑试件初始缺陷建立有限元模型,分析计算其承载力。试验及分析结果表明:Q460低合金高强度钢材具有强度高、塑性性能较好等特点;由实测截面残余应力值得到其分布形式与普通钢材焊接H形截面残余应力分布基本相同;高强度钢材焊接H形截面压弯构件承载力试验值明显高于GB 50017-2003设计公式计算值;文中采用的有限元分析方法可以较准确地计算试件的承载力。研究成果为高强度钢材在实际工程中的应用提供试验参考。  相似文献   

20.
为合理重复利用废弃石材,将抗压强度高、脆性强的石材置于钢管混凝土柱(CFST)中部,利用钢管的约束充分发挥石材的抗压强度并延缓其压溃,形成内填料石钢管混凝土(SCFST)柱。为研究SCFST短柱的轴压受力机理,采用通用有限元软件ABAQUS建立SCFST短柱精细化3D有限元模型,并利用已经完成的18根SCFST短柱和6根传统钢管混凝短柱试件的破坏形态和荷载-变形关系试验结果对模型的可靠性进行验证。通过验证后的有限元模型,分析SCFST短柱各部件之间的相互作用及荷载分配规律。在此基础上,进一步开展系统的参数分析,研究内填料石尺寸、钢管壁厚、钢管屈服强度和混凝土强度等参数对SCFST柱轴压性能的影响规律。研究结果表明,不同部件间的相互作用随钢管壁增厚和混凝土强度提高而增大,受内填石料尺寸的影响较小。提出了适用于SCFST短柱的轴压承载力计算式,在研究参数范围内计算式具有较好的计算精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号