首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
半刚性连接钢框架-钢板剪力墙结构抗震性能试验研究   总被引:1,自引:1,他引:1  
通过对半刚性连接框架-钢板剪力墙结构在水平反复荷载作用下的试验研究,得到了结构的滞回曲线、延性指标、水平刚度、梁柱应变、转角及各关键部位的变形。从耗能能力、刚度退化、承载力、延性等方面分析该种结构的抗震性能和耗能机理;依据应力分布、梁柱转角研究半刚性节点与钢板剪力墙的相互影响效果;分析结构的内力转换和破坏模式。结果表明:该结构具有良好的延性和耗能性能;半刚性节点在反复荷载作用下没有明显变形,节点刚度退化小,框架和钢板剪力墙协同工作良好;梁柱半刚性连接弱化了结构的整体刚度,框架自身承担的水平荷载有限;破坏模式为内填钢板剪力墙局部撕裂,拉力带作用明显,钢框架柱脚及梁柱半刚性连接部位形成塑性铰,框架整体呈弯曲破坏模式。图12表4参10  相似文献   

2.
钢板剪力墙低周反复荷载试验研究   总被引:34,自引:0,他引:34       下载免费PDF全文
本文进行了6个13比例钢板剪力墙的低周反复荷载试验,重点研究了钢板墙极限承载力和滞回性能,为钢板墙结构利用屈曲后强度及抗震设计提供试验依据;本试验揭示了边柱局部屈曲、加劲肋布置形式、加劲板刚度和板高厚比对钢板墙滞回性能的影响。试验结果表明,边柱不出现局部屈曲是钢板墙发挥极限承载力的重要保证;厚板和较强的加劲肋对提高钢板墙滞回曲线的饱满度和滞回环面积是有利的;三种钢板墙以交叉加劲板的承载力和滞回性能最佳,十字加劲板次之,钢板墙结构耗能能力依赖于钢板与边柱的弹塑性变形和钢板面外鼓曲变形。试验曲线与应用弹塑性大挠度有限元法计算的滞回曲线吻合良好;利用屈曲后强度的钢板墙受剪承载力,其试验值与本课题建议公式及有限元值计算结果基本一致。  相似文献   

3.
钢板剪力墙在墙板屈曲后仍具有一定的抗压能力,板厚越大,抗压能力越强,对结构整体性能的影响也越大,现有的简化模型尚不能很好地考虑该效应.为此,首先分析了计入压应力的钢板墙的受力状态,进而推导了考虑墙板抗压能力的钢板剪力墙的刚度、承载力和屈服位移的计算式,并据此提出了一种通用拉杆模型.该模型仅通过调整经典多拉杆模型中拉杆的...  相似文献   

4.
The behavior of unstiffened thin steel plate shear walls with circular perforations placed at the center of the infill plates is examined. A shear strength equation is developed for perforated steel plate shear wall with circular perforation at the center. A series of single storey perforated steel plate shear walls with different aspect ratios and different perforation diameters were analyzed to assess the proposed shear strength equation. A comparison between the nonlinear pushover analysis and the proposed equation shows excellent agreement. The proposed shear strength equation is applied for design of boundary columns of one 4-storey and one 6-storey perforated steel plate shear walls. The predicted design forces in the boundary columns for the selected perforated shear walls are compared to the forces obtained from nonlinear seismic analysis. The proposed equation gives very good predictions for the design forces in the boundary columns.  相似文献   

5.
提出一种适用于钢框架结构体系的新型组合钢板剪力墙单元,它由三边固接一边弹性约束的钢板和预制水泥基覆板组合而成。通过三种钢板宽厚比的纯钢板剪力墙和组合钢板剪力墙共6个试件的静力加载试验,考察宽厚比对三边约束钢板受剪承载力的影响,同时考察分析预制水泥基覆板对内嵌钢板的屈曲承载力和受剪承载力的影响。试验结果表明:宽厚比决定了钢板初始抗侧性能和屈曲模态;预制水泥基覆板对提高剪力墙单元受剪承载力和钢板屈曲承载力有一定帮助;通过有效抑制内嵌墙板的面外屈曲,可以提高组合钢板剪力墙单元的抗震性能。  相似文献   

6.
This paper investigates the behavior of steel plate shear walls (SPSWs) with pre-compression from adjacent frame columns which is produced in the construction process. Firstly, some parameters used in analytical finite element models, such as the stiffness of frame beams and columns and the magnitude of the loads are discussed. Then, numbers of numerical examples are analyzed and show that the influence of pre-compression varies with the dimension of SPSWs. Also, the distribution and transferring of axial forces between frame columns and SPSWs during loading are discussed. Finally, a reduction coefficient of shear-carrying capacity of SPSW due to pre-compression is proposed.  相似文献   

7.
Thin steel plate shear walls behavior and analysis   总被引:2,自引:0,他引:2  
Steel plate shear walls have been used in buildings in North America and Japan. Until recently, the design practice has been to limit the strength of the wall to the buckling strength of the plate. The post-buckling strength of thin plates subjected to shear has been recognized for more than 60 years, since it was outlined by Wagner in the early 1930s. Tests of a quarter and one third scale specimens of thin steel plate shear walls under cyclic loading were performed; the tests are described and the results are summarized. An analytical model to determine the behavior of thin steel plate shear walls was developed and is given. The model is capable of depicting the behavior of walls with plates welded or bolted to the surrounding beams and columns of the building frame. Comparisons between the analytical and experimental results are made.  相似文献   

8.
In this paper, composite shear walls with different encased steel plates (flat, horizontal corrugated, and vertical corrugated) were tested and simulated by Abaqus to investigate the seismic behavior of corrugated steel plate concrete composite shear walls (SPCSWs). The failure characteristics, deformation and energy dissipation capacity, and stiffness and bearing capacity of the structures under low‐frequency cyclic load were analyzed, and indexes of the seismic performance were obtained. The formulas of the shear‐bearing capacity of steel plate concrete composite shear walls are suggested, and the shear‐sharing ratio of each member is obtained. According to the obtained results, corrugated steel plates can bond with concrete well, and the bearing capacity of the vertical corrugated SPCSW are higher than that of the horizontal corrugated SPCSW. Compared with flat SPCSW, corrugated SPCSW has higher initial stiffness and lateral stiffness, better ductility and energy dissipation ability, and the degradation of bearing capacity and stiffness is slower. The shear‐sharing ratio of a steel plate is larger than that of reinforced concrete in the flat SPCSW and the vertical corrugated SPCSW, the shear force shared by steel plate and reinforced concrete in horizontal corrugated SPCSW is basically the same.  相似文献   

9.
钢板剪力墙抗震性能试验研究   总被引:2,自引:0,他引:2  
以天津国际金融会议酒店工程为背景对钢板剪力墙的抗震性能进行试验研究。完成了3个4层1∶5缩尺比例的钢板剪力墙试件的拟静力试验。试件主要变化参数包括墙板开洞和中柱设置。试件SPSW-1墙板开洞,试件SPSW-2墙板不开洞,试件SPSW-3带有中柱,且中柱一侧墙板开洞。在钢板剪力墙的墙板上布置了槽形和一字形两种截面形式的加劲肋。试验结果表明:钢板剪力墙结构具有良好的承载力、延性和耗能能力;开洞降低了钢板剪力墙结构的刚度和承载力;中柱提高了钢板剪力墙结构的刚度和承载力;加劲肋可增强钢板剪力墙结构的刚度和稳定承载力,开洞补强效应显著。  相似文献   

10.
对于超薄加劲钢板剪力墙,由于钢板超薄,采用传统焊接工艺将导致严重的焊接变形,故需要采用改进焊接工艺,即将钢板墙在加劲肋处断开,进行弯折组合后焊接并形成加劲肋。为研究采用改进焊接工艺完成的超薄加劲钢板剪力墙的受剪性能,进行了足尺试件的受剪性能试验,研究了钢板墙的受剪破坏形态、滞回特性、承载能力及耗能能力等,验证了在竖向加劲肋位置采用的改进连接构造及焊缝工艺满足受剪承载力要求,并对不同钢柱截面、不同墙宽高比对钢板墙受剪性能的影响进行了对比分析。结果表明:采用改进工艺的钢板剪力墙满足受剪承载力要求且具有稳定的耗能能力,随着钢柱截面积增大,钢板墙的侧移刚度、峰值荷载均有所增加,相应的极限位移、耗能能力有所下降;随着墙宽高比减小,钢板墙的侧移刚度、屈服荷载、峰值荷载均相应降低,相应的极限位移、耗能能力有所提高。采用通用有限元分析软件ANSYS对超薄加劲钢板剪力墙的受剪性能试验进行了数值模拟,有限元结果与试验结果总体吻合良好,有限元分析可以很好地模拟超薄加劲钢板剪力墙的全受力过程和破坏模式。  相似文献   

11.
The AISC Seismic Design Provisions now include capacity design requirements for steel plate shear walls, which consist of thin web plates that infill frames of steel beams, denoted horizontal boundary elements (HBEs), and columns, denoted vertical boundary elements (VBEs). The thin unstiffened web plates are expected to buckle in shear at low load levels and develop tension field action, providing ductility and energy dissipation through tension yielding of the web plate. HBEs are designed for stiffness and strength requirements and are expected to anchor the tension field formation in the web plates. VBEs are designed for yielding of web plates and plastic hinge formation at the ends of the HBEs.This paper assesses the behavior of code designed SPSWs. A series of walls are designed and their behavior is evaluated using nonlinear response history analysis for ground motions representing different hazard levels. It is found that designs meeting current code requirements satisfy maximum interstory drift requirements considering design level earthquakes and have maximum interstory drifts of less than 5% for maximum considered earthquakes. Web plate ductility demands are found to be significantly larger for low rise walls than for high rise walls where higher modes of vibrations impact the response. The percentage of story shear resisted by the web plate relative to the boundary frame is found to be between 60% and 80% and is relatively independent of panel aspect ratio, wall height, or hazard level, but is affected by transitions in plate thickness. Maximum demands in VBEs in design level shaking are found to be considerably less than those found from capacity design for SPSWs with 9 or more stories.  相似文献   

12.
Implementation of M-PFI method in design of steel plate walls   总被引:1,自引:0,他引:1  
To demonstrate implementation of the modified-plate frame interaction (M-PFI) method in the design of a steel plate wall (SPW) system, three SPWs of different heights were designed for this paper using the M-PFI method. Evaluation of the M-PFI design methodology was performed using the finite element (FE) method to analyze each of the three SPWs under a pushover load to determine its load displacement diagram. FE results were then compared with M-PFI model results. Good agreement was observed for stiffness and strength of the SPW models obtained from both the M-PFI and FE methods. The FE method was used not only to evaluate the three SPW designs, but also to investigate the effects of beam size and material hardening on SPW design. This paper also presents a step-by-step M-PFI design procedure and a simplified flow chart to better illustrate the design process.  相似文献   

13.
Steel plate shear wall (SPSW) has been widely used as a lateral force resisting system (LFRS) for medium or high‐rise buildings. The fundamental period is an important parameter for seismic design and seismic risk assessment of building structures. In this paper, a simplified method is developed for the period prediction of SPSW structures based on the basic theory of engineering mechanics. It estimates a SPSW structure as a shear system of steel frame and a shear‐flexure system of SPSWs separately. The fundamental period of the SPSW structure is calculated according to the integration of the lateral stiffness of the steel frame and SPSWs along the height. A corrected formula is proposed based on the fitting analysis of the ratio of the FEM period to the estimated period. A shaking table test is used to validate the corrected formula, the relative error between the corrected result and the test result is 5.0%. Besides, the proposed method is also compared to some existing methods for the period prediction of SPSW structures, the results indicate that the proposed method has good accuracy and can be hand‐calculated. Finally, a probability‐based method is proposed for the corrected formula, and the fundamental period could be determined with a certain guarantee. A confidence interval estimation could be determined via the proposed method according to the demand of structural design.  相似文献   

14.
为了研究密肋网格防屈曲构件对钢板剪力墙结构性能的影响,对设置防屈曲构件和不设置防屈曲构件的两榀三层钢板剪力墙结构进行了拟静力试验研究。对比分析两种结构的滞回性能,破坏模式,以及承载力、耗能和刚度等力学性能指标。研究表明:在不考虑肋条对内填板嵌固的基础上,需对密肋网格防屈曲钢板剪力墙肋板间距以及肋板刚度进行构造设计;相比于不设置防屈曲构件的钢板剪力墙,密肋网格防屈曲钢板剪力墙结构,避免了结构滞回环体的捏缩现象和墙板的整体呼吸效应,极大减弱了墙板的声响和震颤现象,降低了边框柱的破坏程度;墙板破坏为小区格内板件和边缘板件的局部屈曲,肋板未发生破坏;设置防屈曲构件结构的承载力和耗能量分别提高24%和20%,位移延性系数降低28%。  相似文献   

15.
Ultimate shear strength of steel plate shear walls, SPSW, was conventionally computed as the sum of base shear supported by in-fill plate and boundary frame elements. The base shear supported by the in-fill plate was computed assuming that it was fully yielded after buckling whereas the base shear supported by the boundary frame elements was computed by plastic analysis assuming uniform yielding mechanism. In this paper the ultimate shear strength of SPSW was investigated by the finite element method. A detailed three-dimensional finite element model was established using ANSYS software at which the in-fill plate and the boundary frame elements were modeled using finite strain iso-parametric shell elements. The analysis included material and geometric non-linearities. Numerical results obtained from cyclic and pushover loading of SPSWs were verified by comparison to test results published in the literature. A comprehensive parametric analysis was conducted to assess the effect of geometric and material parameters of the wall on its ultimate shear strength. Discrepancies between numerical results and conventional theory were attributed to interaction of in-fill plate and boundary frame elements at ultimate load. When the flexural rigidity of boundary frame elements decreased, the in-fill plate did not achieve full yield strength. On the other hand, the base shear supported by boundary frame elements increased when thicker in-fill plates were utilized. Numerical results were used to update the theoretical expression of ultimate shear strength of SPSWs. The proposed expression was assessed by comparison to test results published in the literature.  相似文献   

16.
An analytical model of the unstiffened steel plate shear wall (SPSW) considering precompression from the adjacent frame columns is proposed and experimentally verified. First, the distribution and transferring of the gravity loads between boundary columns and the infill steel plate was proposed. Second, the shear‐displacement diagram of the SPSW under compression–shear interaction was obtained, and to further consider the global bending deformation, the shear‐displacement diagram of the SPSW under compression–shear–bending interaction was obtained. Third, the load‐carrying capacities and deformations at the state of elastic buckling of the infill steel plate, the yield of Zones I and III, the yield of Zone II, and the yield of the boundary frame were presented. Finally, cyclic loading test on four scaled one story single bay unstiffened SPSWs under different axial forces at the top of the columns was carried out to verify the proposed analytical model. Shear‐displacement relationship, shear capacity, and envelope curves of the specimens were compared with the predicted values. Results indicate that the proposed analytical model can reasonably predict the decrease of the shear load capacity and stiffness of the SPSWs due to the existence of the axial load at the boundary columns.  相似文献   

17.
基于“自复位”理念,提出了一种采用钢板剪力墙耗能的自复位钢框架钢板剪力墙结构,对其进行了受力机理分析,并给出了自复位钢框架钢板剪力墙的复位条件。依据GB 50011—2010《建筑抗震设计规范》设定了自复位钢框架钢板剪力墙基于性能的设计目标,基于性能目标提出了自复位钢框架钢板剪力墙的设计流程,从构件的实际受力状态出发对该设计方法进行了研究,并推导出构件的设计公式。以某传统钢框架为例,对其进行了由钢板剪力墙耗能的自复位结构边缘构件设计,并采用有限元软件ABAQUS对其中单榀单跨进行了Pushover分析。结果表明:当层间位移角达到2%时,结构的残余变形量控制在0.2%以内,主体结构边缘构件仍处于弹性工作状态,推覆过程中钢板墙耗散了大量能量;推覆结束后,结构余留少量残余变形,这主要是由于梁柱节点绕梁上下翼缘转动时梁上下翼缘角部受到挤压引起,可通过适当设置翼缘加强板减少甚至消除残余变形。  相似文献   

18.
三类钢板剪力墙结构试验研究   总被引:6,自引:0,他引:6  
防屈曲钢板剪力墙已被试验证明是优秀的抗侧耗能构件,但墙板嵌入受弯框架时,二者之间的相互作用尚需进一步研究。为此进行了两层单跨钢框架内嵌防屈曲钢板剪力墙的试验研究,作为比较同时进行了两层单跨钢框架内嵌非加劲钢板剪力墙与两层单跨钢框架内嵌组合钢板剪力墙结构的试验研究。在试验的基础上,对试件进行有限元分析,比较了三类钢板剪力墙之间的性能差异。研究表明,防屈曲钢板剪力墙能够消除无加劲钢板剪力墙在水平荷载下产生的巨大屈曲噪声,具有较大的初始刚度与承载力,拥有良好的延性与滞回耗能性能,而且由于其屈服先于屈曲发生,对周边框架产生的附加弯矩很小;组合钢板剪力墙的性能与防屈曲钢板剪力墙相似,但由于后期外包的混凝土发生脱离,内嵌钢板剪力墙会产生拉力带,不仅对框架产生不利影响,而且自身承载力、刚度与耗能能力均有不同程度的退化。图32表1参12  相似文献   

19.
Design of steel plate shear walls considering inelastic drift demand   总被引:1,自引:0,他引:1  
The unstiffened steel plate shear wall (SPSW) system has emerged as a promising lateral load resisting system in recent years. However, seismic code provisions for these systems are still based on elastic force-based design methodologies. Considering the ever-increasing demands of efficient and reliable design procedures, a shift towards performance-based seismic design (PBSD) procedure is proposed in this work. The proposed PBSD procedure for SPSW systems is based on a target inelastic drift and pre-selected yield mechanism. This design procedure is simple, yet it aims at an advanced design criterion. The proposed procedure is tested on a four-story test building with different steel panel aspect ratios for different target drifts under selected strong motion scenarios. The designs are checked under the selected ground motion scenarios through nonlinear response-history analyses. The actual inelastic drift demands are found to be close to the selected target drifts. In addition, the displacement profiles at peak responses are also compared with the selected yield mechanism. Future modifications required for this design procedure for different SPSW configurations are identified based on these test cases.  相似文献   

20.
为研究半刚性框架-钢板剪力墙结构的抗震性能,进行了1个缩尺比为1/3的单跨4层钢框架-屈曲约束钢板剪力墙的振动台试验。试验采用模拟地震动的方法,选取El Centro波、Taft波和一条人工合成波,分析在7度多遇至9度罕遇共计8个水平地震作用工况下结构的动力特性和动力响应。研究结果表明:在多遇地震作用下,结构无明显塑性变形;罕遇地震作用时,1、3层墙板大部分区格形成拉力带。随着地震激励的增大,结构刚度逐渐退化,9度罕遇地震输入后结构抗侧刚度最大降幅仅为12%;屈曲约束钢板墙作为第一道抗震设防防线,率先进入弹塑性工作阶段,吸收耗散地震能量,避免框架发生破坏;在多遇及罕遇地震作用下结构的层间位移角分别为1/476和1/68,均满足我国现行抗震规范对层间位移角限值的规定。结构整体表现出优异的抗震性能,满足我国“两阶段,三水准”抗震设防要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号