首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low-Temperature Synthesis of Praseodymium-Doped Ceria Nanopowders   总被引:1,自引:0,他引:1  
Praseodymium-doped ceria (CeO2) nanopowders have been synthesized via a simple but effective carbonate-coprecipitation method, using nitrates as the starting salts and ammonium carbonate as the precipitant. The precursors produced in this work are ammonium rare-earth double carbonates, with a general formula of (NH4)0.16Ce1− x Pr x (CO3)1.58·H2O (0 < x ≤ 0.20), which directly yield oxide solid solutions on thermal decomposition at a very low temperature of ∼400°C. Praseodymium doping causes a gradual contraction of the CeO2 lattice, because of the oxidation of Pr3+ to smaller Pr4+, and suppresses crystallite coarsening of the oxides during calcination. Dense ceramics have been fabricated from the thus-prepared nanopowders via pressureless sintering for 4 h at a low temperature of 1200°C.  相似文献   

2.
Synthesis of Ce0.9Gd0.1O1.95 (CGO) powder from a polymeric precursor solution containing a mixture of nitrates, nitric acid, and ethylene glycol was investigated with emphasis on the effect of polymerization of the precursor solution on the crystallization and morphology of the derived solid intermediate and the final oxide powder. It is shown for the first time in this work that the solid intermediate derived from the polymerized solution is present in the form of well-crystallized cerium-gadolinium formate solid solution, Ce1− x Gd x (HCOO)3, exhibiting anisotropic growth. Further polymerization of the precursor solution resulted in the direct formation of loosely agglomerated nanoscaled CGO oxide powder from the polymerized solution at temperatures as low as 130°C.  相似文献   

3.
Ceria (CeO2) aerogels with high surface area and high porosity have been prepared. Ce-methoxyethoxide diluted in excess methoxyethanol was slowly hydrolyzed to yield a gel, which was then supercritically dried in CO2. Both as-synthesized and annealed aerogels were examined by X-ray powder diffraction, infrared spectroscopy, scanning electron microscopy, and BET surface area and pore-size analyses. Thermal analysis of the as-synthesized gel showed it to contain only ∼5 wt% residual organics, which were removed by 300°C under oxygen. The unheated ceria aerogel was crystalline and exhibited a specific surface area of 349 m2/g with average pore diameter of ∼21.2 nm and 90% porosity. Heat treatment led to a reduction of porosity and pore size, as would be expected, but the extremely narrow pore-size distribution of the aerogel was retained.  相似文献   

4.
Direct precipitation of nanometer-sized particles of ceria–zirconia (CeO2–ZrO2) solid solutions with cubic and tetragonal structures was successfully attained from acidic aqueous solutions of cerium(III) nitrate (Ce(NO3)3) and zirconium oxychloride (ZrOCl2) through the addition of ammonium peroxodisulfate ((NH4)2S2O8), because of promotion of the hydrolysis via the oxidation of Ce3+ ions, together with the simultaneous hydrolysis of ZrOCl2 under hydrothermal conditions. Ultrafine CeO2 particles also could be formed from relatively concentrated aqueous solutions of the same trivalent cerium salt in the presence of (NH4)2S2O8 via hydrolysis. The crystallite size and lattice strain of as-precipitated solid solutions varied, depending on the composition within the CeO2–ZrO2 system. Creation of a solid solution of ZrO2 into a fluorite-type CeO2 lattice clearly introduced lattice strain, as a consequence of the decreasing crystallite size. Both the direct precipitation process and the effectiveness of the presence of (NH4)2S2O8 for the synthesis of CeO2–ZrO2 solid solutions were discussed.  相似文献   

5.
The synthesis of ultrafine cerium dioxide (CeO2) powders via mechanochemical reaction and subsequent calcination was studied. Anhydrous CeCl3 and NaOH powders, along with NaCl diluent, were mechanically milled. A solid-state displacement reaction—CeCl3+ 3NaOH → Ce(OH)3+ 3NaCl—was induced during milling in a steady-state manner. Calcination of the as-milled powder in air at 500°C resulted in the formation of CeO2 nanoparticles in the NaCl matrix. A simple washing process to remove the NaCl yielded CeO2 particles ∼10 nm in size. The particle size was controlled in the range of ∼10–500 nm by changing the calcination temperature.  相似文献   

6.
The influence of poly(acrylic acid) (PAA) concentration and molecular weight on the filtration behavior of CeO2 slurries with 20 nm particle size was studied. Low-viscosity suspensions could be produced by adsorbing a monolayer of PAA that covered the nanoparticles. For all suspensions investigated, the cake permeability was lower than predicted by the Kozeny–Carman equation and decreased with increased filtration pressure because of the presence of a compressible PAA layer 3–5 nm thick on the surface of the particles. The permeability of the nanoparticulate cakes decreased with increased polymer addition because of clogging.  相似文献   

7.
Two wet-chemical routes have been used to synthesize Sc2O3 nanopowders from nitrate solutions employing ammonia water (AW) and ammonium hydrogen carbonate (AHC) as the precipitants. The precursors and the resultant oxides are characterized by elemental analysis, X-ray diffractometry, differential thermal analysis/thermogravimetry, high-resolution scanning electron microscopy, and Brunauer-Emmett-Teller analysis. Crystalline γ-ScOOH· n H2O ( n ≈ 0.5) is the only phase obtained by the AW method. This phase dehydrates to Sc2O3 at ∼400°C, yielding hard aggregated nanocrystalline Sc2O3 powders. Three types of precursors have been synthesized by the AHC method, depending on the AHC/Sc3+ molar ratio ( R ): amorphous basic carbonate [Sc(OH)CO3·H2O] at R ≤ 3, crystalline double carbonate [(NH4)Sc(CO3)2·H2O] at R ≥ 4, and a mixture of the two phases at 3 < R < 4. Among these precursors, only the basic carbonate shows spherical particle morphology, ultrafine particle size (∼50 nm), and weak agglomeration. Sc2O3 nanopowders (∼28 nm) with high surface area (∼49 m2/g) have been prepared by calcining the basic carbonate at 700°C for 2 h.  相似文献   

8.
Well-crystallized cerium(IV) oxide (CeO2) powders with nanosizes without agglomeration have been synthesized by a hydrothermal method in an acidic medium by using cerium hydroxide gel as a precursor. The relationship between the grain size, the morphology of the CeO2 crystallites, and the reaction conditions such as temperature, time, and acidity of the medium was studied. The experiments showed that with increasing reaction temperature and time, the CeO2 crystallites grew larger. The crystallites synthesized in an acidic hydrothermal medium were larger and had a more regular morphology than the ones synthesized in a neutral or alkaline medium when the reaction temperature and time were fixed. The CeO2 crystallites synthesized in an acidic medium were monodispersed; however, there was vigorous agglomeration among the grains synthesized in a neutral or alkaline medium. It was demonstrated that the hydrothermal treatment was an Ostwald ripening process and the acidity (pH) of the used hydrothermal medium played a key role in the dissolution of smaller grains. It is proposed that the dissolution process can control the kinetics of the growth of larger grains.  相似文献   

9.
The microstructural evolution and grain-boundary influence on electrical properties of Ce0.90Gd0.10O1.95 were studied. The nanoscale powders synthesized from a semibatch reactor exhibited 50% green density and 92% sintering density at 1200°C (∼200°C lower than previous studies). Impedance spectra as a function of temperature and grain size were analyzed. The Ce0.90Gd0.10O1.95 with finest grain size possessed highest overall grain-boundary resistance; this contribution was eliminated at temperatures >600°C, regardless of grain size. The grain conductivity was independent of grain size and was dependent on temperature with two distinct regimes, indicative of the presence of Gd'Ce− V o∘∘ complexes that dissociated at a critical temperature of ∼580°C. The activation energy for complex dissociation was ∼0.1 eV; the value for the grain-boundary was ∼1.2eV, which was size independent.  相似文献   

10.
A cubic CeO2 (001) film with a thickness of ∼58 nm was grown epitaxially on Y2O3-stablized cubic ZrO2 by oxygen-plasma-assisted molecular-beam epitaxy (OPA-MBE). The interface was characterized using high-resolution transmission electron microscopy (HRTEM). The interface exhibited coherent regions separated by equally spaced misfit dislocations. When imaged from the [100] direction, the dislocation spacing is 3.3 ± 0.5 nm, which is slightly shorter than the expected value of 4.9 nm calculated from the differences in lattice constants given in the literature, but is fairly consistent with that of 3.9 nm which was calculated using the lattice mismatch measured by electron diffraction. Thus, the results presented here indicate that the lattice mismatch between the film and the substrate is accommodated mainly by interface misfit dislocations above some critical thickness.  相似文献   

11.
CeO2 samples doped with 10, 1.0, and 0.1 mol% Y2O3 and undoped CeO2 samples of high purity were studied by impedance spectroscopy at temperatures <800°C and under various oxygen partial pressures. According to microstructural investigations by SEM and analytical STEM (equipped with EDXS), the grain boundaries were free of any second phase, providing direct grain-to-grain contacts. An amorphous siliceous phase was detected at only a few triple junctions, if at all; as a result, its contribution to the grain-boundary resistance was negligible. Nevertheless, the specific grain-boundary conductivities were still 2–7 orders of magnitude lower than the bulk conductivities, depending on dopant concentration, temperature, and oxygen partial pressure. The charge carrier transport across the grain boundaries occurred only through the grain-to-grain contacts, whose properties were then determined by the space-charge layer. The space-charge potential in acceptor-doped CeO2 was positive, causing the simultaneous depletion of oxygen vacancies and accumulation of electrons in the space-charge layer. The very low grain-boundary conductivities can be accounted for by the oxygen-vacancy depletion; the accumulation of electrons became evident in weakly doped and undoped CeO2 at high temperatures and under low oxygen partial pressures.  相似文献   

12.
SrO-doped CeO2 electrolyte has been evaluated in single-cell configuration under solid-oxide fuel cell operating conditions. Because of oxygen loss from the crystal lattice, the material experiences a macroscopic expansion of several percent at 1000°C. On extended cell operation, strontium precipitates-out at/near the anode, resulting in irreversible cell degradation in the case of SrO-doped CeO2. Precipitation and diffusion of SrO causes decreased ionic conductivity and may result in anode delamination. SrO precipitation is attributed to insolubility of the dopant in the reduced CeO2 phase. The diffusion of strontium seems to be related to the flux of oxygen through the sample, but an exact mechanism is unknown.  相似文献   

13.
Cation-doped CeO2 electrolyte has been evaluated in single-cell and short-stack tests in solid oxide fuel cell environments and applications. These results, along with conductivity measurements, indicate that an ionic transference number of ∼0.75 can be expected at 800°C. Single cells have shown a power density >350 mW/cm2. Multicell stacks have demonstrated a peak performance of >100 mW/cm2 at 700°C using metallic separators.  相似文献   

14.
The results of Raman-scattering studies of nanocrystalline CeO2 and ZrO2:16% Y (YSZ) thin films are presented. The relationship between the lattice disorder and the form of the Raman spectra is discussed and correlated with the microstructure. It is shown that the Raman line shape results from phonon confinement and spatial correlation effects and yields information about the material nonstoichiometry level.  相似文献   

15.
Hydroxyl-type Sc2O3 precursors have been synthesized via precipitation at 80°C with hexamethylenetetramine as the precipitant. The effects of starting salts (scandium nitrate and sulfate) on powder properties are investigated. Characterizations of the powders are achieved by elemental analysis, X-ray diffractometry (XRD), differential thermal analysis/thermogravimetry (DTA/TG), high-resolution scanning electron microscopy (HRSEM), and Brunauer-Emmett-Teller (BET) analysis. Hard-aggregated precursors (γ-ScOOH·0.6H2O) are formed with scandium nitrate, which convert to Sc2O3 at temperatures ≥400°C, yielding nanocrystalline oxides of low surface area. The use of sulfate leads to a loosely agglomerated basic sulfate powder having an approximate composition of Sc(OH)2.6(SO4)0.2·H2O. The powder transforms to Sc2O3 via dehydroxylization and desulfurization at temperatures up to 1000°C. Well-dispersed Sc2O3 nanopowders (∼64.3 nm) of high purity have been obtained by calcining the basic sulfate at 1000°C for 4 h. The effects of SO42− on powder properties are discussed.  相似文献   

16.
The present research describes synthesis of hydroxyapatite (HAp) nanopowders using a sol–gel route with calcium nitrate and ammonium hydrogen phosphate as calcium and phosphorous precursors, respectively. Sucrose is used as template material, and alumina is added as a dopant to study its effects on particle size and surface area. Synthesized powders are characterized using X-ray diffractometry, BET surface-area analysis, and transmission electron microscopy. Results show that alumina stabilizes the HAp crystalline phase. Average particle size of mesoporous HAp samples is between 30 and 50 nm with surface area of 51–60 m2/g.  相似文献   

17.
Nanocrystalline WO3 films were produced by advanced reactive gas deposition onto alumina substrates. The as-deposited films had a tetragonal crystal structure and a mean grain size of around 6 nm, as found by X-ray diffraction and electron microscopy. Sintering at a temperature τs > 770 K yielded monoclinic films. We investigated the gas-sensing properties of films sintered up to 870 K. After an initial "activation" at τs= 750 K, the nanocrystalline WO3 films showed excellent gas-sensing properties, even at room temperature, on exposure to low concentrations of H2S in air. As little as 10 ppm of H2S made the conductance increase by a factor of about 103 within 10 min. The initial properties could be restored by heating the films to 530 K for 1 min.  相似文献   

18.
Optimization of Praseodymium-Doped Cerium Pigment Synthesis Temperature   总被引:9,自引:0,他引:9  
The development of red pigments is of great interest to the ceramic industry. Pr(IV) stabilization in a CeO2 matrix yields materials with a red color. In this study, the traditional ceramic method involving solid-state reaction was used to prepare pigments in the system Ce1− x Pr x O2−δ (0.005 ≤ x ≤ 0.1) from mixtures of rare-earth oxides. The chemical stability of these pigments was then determined in some industrial glazes. The glazing tests indicate that the powder samples calcined at 1200° and1300°C are unstable, whereas those calcined at 1400° and 1500°C are stable. These findings are related to the nonformation of a solid solution, to which the pigmenting power is attributed, in calcinations at temperatures below 1400°C.  相似文献   

19.
Nextel™ 720 fibers were coated with LaPO4 and CePO4 monazite. The coatings were applied using washed and unwashed rhabdophane sols derived from La(NO3)3/(NH4)2HPO4 and a washed sol derived from Ce(NO3)3/H3PO4. The coatings were cured in-line at 900°–1300°C. Multiple coatings were also applied. Fiber strength was retained after coating with washed sols, but not with unwashed sols. These results are consistent with earlier work on LaPO4 monazite fiber coatings derived from La(NO3)3/H3PO4.  相似文献   

20.
Films of LiCoO2 were directly fabricated by hydrothermal treatment of a cobalt metal plate in a 4 M LiOH aqueous solution at 20°–200°C, with no subsequent annealing, and the effect of fabrication temperature on the film microstructure was investigated for the films. Micro-Raman studies have indicated that increasing the fabrication temperature produces a phase change in LiCoO2 from spinel to hexagonal. This change is revealed by a variation in the film thickness and the film surface morphology, as seen in the micrographs. The present scanning electron microscopy results showed a growth of spinel LiCoO2 particles up to 125°C and the formation of hexagonal particles at >125°C, in good agreement with the Raman and X-ray photoemission spectroscopy results. A film-formation mechanism based on the dissolution of cobalt metal, followed by precipitation, as LiCoO2, onto the cobalt substrate, is proposed. The mechanism is supported by experimental data, such as the one-step potential evolution (0 → 0.6 V, with respect to the Ag/AgCl reference electrode) of the cobalt electrode during hydrothermal treatment and the detection of dissolved cobalt species by atomic absorption and ultraviolet–visible-light absorption spectroscopic analyses. Apparently, the evolution of the film structure arises from different nucleation and growth rates of LiCoO2 particles on the film, caused by the dissolution–precipitation mechanism, and a phase selection of spinel or hexagonal as the fabrication temperature increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号