首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
简要介绍了超高浓度乙醇发酵的特点及面临的困难,对VHG乙醇发酵国内外研究进展进行了综述,同时对该领域发展的前景进行了分析和展望。  相似文献   

2.
控制自絮凝酵母高浓度乙醇发酵过程的氧化还原电位(oxidoreduction potential, ORP)能降低环境胁迫对细胞的影响,提高乙醇生产强度和乙醇收率。实验考察了初始糖浓度为200、250、300 g·L-1及ORP控制为-100、-150 mV和不控制的乙醇发酵情况。结果表明控制ORP的发酵过程,生物量和细胞存活率均高于不控制的系统,相应的发酵速度得到了提高,但是乙醇对糖的收率存在最优值。在实验设定初始糖浓度最高的300 g·L-1的发酵过程中,控制ORP为-150 mV时,取得了最大的净乙醇生成量和乙醇对糖的收率。ORP控制改变了絮凝颗粒的粒径分布,运用多元线性拟合,发现ORP对絮凝的影响是正向的。ORP改变了发酵液中生物量及代谢物的浓度而间接影响了细胞的絮凝状况。  相似文献   

3.
高浓度乙醇发酵技术具有高设备利用率、高乙醇浓度、高细胞密度和高发酵效率等优点,能够有效提高发酵成熟醪乙醇浓度,降低生产成本,提高装置生产能力,是乙醇发酵行业及科研机构的主要研究方向之一.简述了高浓度乙醇发酵技术的原理、特点以及面临的问题,对高浓度乙醇发酵国内外研究进展进行了综述,同时对高浓度乙醇发酵的发展前景进行了展望...  相似文献   

4.
An optimal medium (300 g·L-1 initial glucose) comprising 6.3 mmol·L-1 Mg2+, 5.0 mmol·L-1 Ca2+, 15.0 g·L-1 peptone and 21.5 g·L-1 yeast extract was determined by uniform design to improve very high gravity (VHG) ethanol fermentation, showing over 30% increase in final ethanol (from 13.1% to 17.1%, by volume), 29% decrease in fermentation time (from 84 to 60 h), 80% increase in biomass formation and 26% increase in glucose utilization. Experiments also revealed physiological aspects linked to the fermentation enhancements. Compared to the control, trehalose in the cells grown in optimal fermentation medium increased 17.9-, 2.8-, 1.9-, 1.8- and 1.9-fold at the fermentation time of 12, 24, 36, 48 and 60 h, respectively. Its sharp rise at the early stage of fermentation when there was a considerable osmotic stress suggested that trehalose played an important role in promoting fermentation. Meanwhile, at the identical five fermentation time, the plasma membrane ATPase activity of the cells grown in optimal medium was 2.3, 1.8, 1.6, 1.5 and 1.3 times that of the control, respectively. Their disparities in enzymatic activity became wider when the glucose levels were dramatically changed for ethanol production, suggesting this enzyme also contributed to the fermentation improvements. Thus, medium optimization for VHG ethanol fermentation was found to trigger the increased yeast trehalose accumulation and plasma membrane ATPase activity.  相似文献   

5.
王亮  薛闯  白凤武 《化工学报》2013,64(10):3725-3731
超高浓度(very high gravity,VHG)连续乙醇发酵过程中的振荡行为会导致发酵终点的乙醇浓度振荡和降低,是VHG连续乙醇发酵面临的主要问题。研究表明,游离酵母Saccharomyces cerevisiae 4126和自絮凝酵母BHL01在VHG连续乙醇发酵过程中,生物量、残糖、乙醇、甘油等发酵参数都呈现130~145 h的周期性振荡,且絮凝酵母发酵体系的平均乙醇浓度和乙醇生产强度都明显高于游离酵母体系。在絮凝酵母VHG连续乙醇发酵过程中利用发酵尾气气提分离乙醇,酵母细胞振荡行为被明显弱化,达到拟稳态状态,并且使发酵液中的残糖浓度控制在0.1 g·L-1以下,平均乙醇浓度为110.87 g·L-1,乙醇产率达到2.99 g·L-1·h-1。因此,本研究为弱化VHG连续乙醇发酵中的参数振荡行为提供了新的技术手段。  相似文献   

6.
为促进超高浓度乙醇发酵(350 g/L起始葡萄糖),采用均匀设计法优化发酵培养基成分,结果为8.2 mmol/L Mg2+,1.0 mmol/L Ca2+,30.0 g/L蛋白胨和27.1 g/L酵母浸出膏。采用该优化培养基,实验测得发酵终点乙醇体积分数为18.3%,比未优化时提高约58%,同时,菌体生长和葡萄糖转化利用等其它参数也明显提高。实验进一步探索与发酵状况改善有关的酵母生理方面的变化。结果表明,在发酵过程中生长于优化培养基的菌体的质膜ATP酶活力和胞内海藻糖含量明显高于对照组,提示二者在促进发酵中的重要作用。这是超高浓度乙醇发酵培养基优化引起酵母质膜ATP酶活力和胞内海藻糖含量变化的首次报道。  相似文献   

7.
从液化温度对混合原料高浓度发酵的影响角度出发,分析了不同混合原料对液化温度的需求。通过试验表明,玉米原料采用105℃液化,而其他原料采用95℃液化,原料液化后再混合进行发酵的方式比原料混合后液化的方式发酵酒度提高7.2%。  相似文献   

8.
固定化酵母乙醇萃取发酵研究   总被引:4,自引:0,他引:4  
以十二烷醇为萃取剂,对固定化酵母乙醇萃取发酵进行了研究。探讨了萃取剂对酵母细胞的毒性,以及萃取剂用量、搅拌转速、基质浓度等因素与乙醇萃取发酵的关系,并测定了萃取过程中乙醇的分配系数。为固定化酵母乙醇发酵与溶剂萃取耦合新工艺的开发研究提供了资料。  相似文献   

9.
介绍了水溶性复肥因其速溶速效、节水省工、高效环保的优点,进行了采用硝酸钙与硫酸钾反应制取硝酸钾,加入磷酸用氨中和,再补充适量硝酸铵后制得均一养分的高深度水溶肥的实验。实验结果表明:该工艺小试条件下技术可行,生产出的19-18-19超高浓度硝基水溶性复合肥符合HG/T 4365-2012新标准。  相似文献   

10.
为了提高玉米秸秆的酶解率,对玉米秸秆进行膨化预处理,以乙醇质量浓度为影响值设计实验,研究时间、含氮量、温度、酵母比例四因素对发酵过程的影响。通过单因素试验及正交试验确定了双酵母发酵的最佳试验条件为48 h、含氮质量分数0.25%、33℃、酿酒酵母与毕赤酵母体积比3∶7,乙醇质量浓度可达10.2 g/L。本试验为秸秆乙醇的产业化生产提供技术依据。  相似文献   

11.
A ceramic membrane with pore size of 0.2 μm was used to percolate grain stillage of very high gravity (VHG) ethanol fermentation from corn, and the micro-filtration permeate was completely recycled for the cooking step in the next fermentation process. The concentrations of solids, sugars, total nitrogen and Na+ in the grain stillage and permeate reached a relative steady state after two or three batches of filtration and recycling process. There are no negative effects of by-products on VHG ethanol fermentation, and the final ethanol yield was above 15% (v/v). The conditions of filtration were examined to determine the optimum conditions for the process and included an initial flux of clean water above 550 L·m−2·h−1 (0.1 MPa), an operating differential pressure of 0.15 MPa, an operating temperature above 70 °C, and a permeation flux greater than 136 L·m−2·h−1. It could be concluded that full permeate recycling during ethanol production was an efficient process that resulted in less pollution and less energy consumption. Zhongyang Ding and Liang Zhang made equal contribution to this research.  相似文献   

12.
Due to its merits of drought tolerance and high yield, sweet potatoes are widely considered as a potential alterative feedstock for bioethanol production. Very high gravity (VHG) technology is an effective strategy for improving the efficiency of ethanol fermentation from starch materials. However, this technology has rarely been applied to sweet potatoes because of the high viscosity of their liquid mash. To overcome this problem, cellulase was added to reduce the high viscosity, and the optimal dosage and treatment time were 8 U/g (sweet potato powder) and 1 h, respectively. After pretreatment by cellulase, the viscosity of the VHG sweet potato mash (containing 284.2 g/L of carbohydrates) was reduced by 81%. After liquefaction and simultaneous saccharification and fermentation (SSF), the final ethanol concentration reached 15.5% (v/v), and the total sugar conversion and ethanol yields were 96.5% and 87.8%, respectively.  相似文献   

13.
BACKGROUND: A great amount of wastewater with high contents of chemical oxygen demand (COD) are produced by ethanol production. It would be useful to utilize distillery wastewater to produce L‐lactic acid, which could be a high additional value byproduct of ethanol production. The fermentation process of L‐lactic acid production by a newly isolated Enterococcus hawaiiensis CICIM‐CU B0114 is reported for the first time. RESULTS: The strain produced 56 g L?1 of L‐lactic acid after cultivation for 48 h in optimized medium consisting of (g L?1) 80 glucose, 10 peptone, 10 yeast extract, 1.5 Na2HPO4 and 0.2 MgSO4. E. hawaiiensis CICIM‐CU B0114 was isolated and purified by subculture for growing and producing L‐lactic acid in distillery wastewater of very high gravity (VHG) from ethanol fermentation. L‐lactic acid fermentation was further studied with distillery wastewater substrate in 7 L and 15 L fermentors. The results showed that L‐lactic acid concentrations of 52 g L?1 and 68 g L?1 was achieved in 7 L and 15 L fermentors with the initial sugar concentrations of 67 g L?1 and 87 g L?1, respectively. CONCLUSION: The production of L‐lactic acid by the newly isolated E. hawaiiensis CICIM‐CU B0114 was carried out and the fermentation medium was optimized by orthogonal experimental design. This new strain holds the promise of L‐lactic acid production utilizing distillery wastewater from VHG ethanol fermentation. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
锌离子对自絮凝酵母乙醇耐性和絮凝颗粒大小的影响   总被引:1,自引:1,他引:1  
薛闯  赵心清  葛旭萌  袁文杰  白凤武 《化工学报》2008,59(10):2582-2588
研究了6种金属离子在合成培养基中对摇瓶培养的自絮凝酵母乙醇耐性的影响,发现锌离子对高浓度乙醇冲击下的酵母细胞活性有保护作用,并进一步研究了乙醇连续发酵过程中锌的添加对自絮凝酵母乙醇耐性的影响。发酵培养基中分别添加0.01、0.05 和 0.1 g·L-1的硫酸锌时,自絮凝酵母颗粒平均粒度减小,同时乙醇耐性和高温耐性都得到明显提高,并且发现细胞活性的提高与酵母细胞内麦角固醇和海藻糖的增加密切相关。对酵母细胞内锌的含量的分析表明,3个添加组胞内锌的积累量基本相似,比对照组均增加了6倍。相关性分析表明,酵母胞内锌含量与酵母细胞的胁迫耐性密切相关并显著影响其胁迫耐性。各添加组的乙醇产量均有提高,其中添加0.05 g·L-1的硫酸锌时乙醇产量最高,比对照组高8.4%。以上研究结果表明,调控连续乙醇发酵过程中培养基中锌离子浓度,是提高酵母细胞乙醇耐受性、高温度耐受性和乙醇产量的有效途径。  相似文献   

15.
张强  郭元  韩德明 《化工进展》2014,33(1):187-192
酿酒酵母是重要的工业微生物之一,具有发酵速度快、乙醇产量高特性,主要应用于乙醇和酿酒行业。但在发酵过程中,随着乙醇积累会对酵母细胞产生毒害作用,从而抑制了菌体细胞生长和乙醇进一步形成。因此,对酿酒酵母乙醇耐受性机制研究具有重要的理论和实际意义,也为选育具有较强乙醇耐受性的酵母菌种提供了理论基础。本文综述了酿酒酵母乙醇耐受性研究进展,介绍了酿酒酵母乙醇发酵途径、乙醇耐受性机理,主要阐述了提高酵母乙醇耐受性方法。指出加强酵母乙醇耐受性机理研究,了解乙醇耐受性与其他胁迫耐受性联系,最终提高酵母菌乙醇转化效率是未来研究关键。  相似文献   

16.
针对两级旋转填料床强化吸收NOx过程中存在第二级效率低的问题,在两级间设立氧化塔,考察硝烟中NOx的脱除率随氧化度、超重力因子、喷淋密度、气速的影响规律。实验结果表明:NOx浓度越高,达到较高氧化度的时间越短;NOx浓度较低时,氧化度达到50%的氧化时间比较短,但要达到90%则需要较长氧化时间;不同超重力因子、喷淋密度、气速等条件下其脱除率均随氧化度的增加而增加;在较高NOx浓度和氧化度下,脱除率高于常规吸收平衡值的5%。  相似文献   

17.
Sweet potato is an important dietary and economic material in China (accounting for 85% of global production in 2005) and Southeast Asia. The limitation of using root and tuber of sweet potato mash at high solids content is attributed to its high viscous nature. The aim of this study was to investigate the influence of different viscosity reduction factors and found optimal parameters via a surface response design. The optimal xylanase enzyme dose, pretreatment time and temperature were 1.56 AGU/g, 87.6 min and 44.1 °C, respectively. Using pretreatment sweet potato mash on the optimized condition, the final viscosity 498.1 cp and ethanol yield of 135.1 g/kg was obtained by Saccharomyces cerevisiae, which was equivalent to 90.7% of the theoretical yield.  相似文献   

18.
Continuous ethanol fermentation of glucose using fluidized bed technology was studied. Saccharomyces cerevisiae were immobilized and retained on porous microcarriers. Over two-thirds of the total reactor yeast cell mass was immobilized. Ethanol productivity was examined as dilution rate was varied, keeping all other experimental parameters constant. Ethanol yield remained high at an average of 0.36 g ethanol g?1 glucose (71% of theoretical yield) as the dilution rate was increased stepwise from 0.04 h?1 to 0.14 h?1. At a dilution rate of 0.15 h?1, the ethanol yield steeply declined to 0.22 g ethanol g?1 glucose (44% of theoretical yield). The low maximum percentage of theoretical yield is primarily due to an extended mean cell residence time, and possibly due to the inhibitory effect of a high dissolved carbon dioxide concentration, enhanced by the probable intermittent levels of low pH in the reactor. Constant ethanol production was possible at a high glucose loading rate of 840 g dm?3 day?1 (attained at a dilution rate of 0.14 h?1). Although the highest average ethanol concentration (97.14 g dm?3) occurred at the initial dilution rate of 0.04 h?1, the peak average ethanol production rate (2.87 g (g yeast)?1 day?1) was reached at a greater dilution rate of 0.11 h-1. Thus, the optimal dilution rate was determined to be between 0.11 h?1 and 0.14 h?1. Ethanol inhibition on yeast cells was absent in the reactor at average bulk-liquid ethanol concentrations as high as 97.14 g dm?3. In addition, zero-order kinetics on ethanol production and glucose utilization was evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号