首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The interactions of nitrogen oxides with carbons differing in the chemical structure of surface functional groups were studied using in situ FTIR combined with the measurements of catalytic activity. Microporous carbon samples with similar pore size distribution were prepared from cellulose. The structure and coverage of adsorbates during reactions at temperatures between 295 and 573 K are determined by FTIR. No significant changes in NOx reaction with carbon surface were found by oxidation of the carbonized film. During the study of the reaction of NO/O2 mixture with carbons, the infrared absorption bands for the surface species formed are similar to the IR bands observed after the reaction of carbon samples with NO2. For both reactions, surface species, including C-NO2, C-ONO, C-NCO and anhydride structures are formed. Catalytic NOx reduction by carbons has been investigated in the temperature range 295-623 K in the flow reactor equipped with an FTIR gas analyzer. As the surface of carbon is exposed to NO2 gaseous NO is formed. The reduction of NO2 to N2 without the use of an externally supplied reductant can be achieved with microporous carbons. Significant NO2 conversion to N2 occurred at 623 K on both oxidized and non-oxidized carbons.  相似文献   

3.
The detailed reaction mechanism of Di-Air, which showed the unprecedented high deNOx performance at high temperature conditions, was studied in this work. Since the Di-Air phenomenon occurs with continuous short pulse injections of hydrocarbons over NSR (NOx storage and reduction) catalyst, this study focused on the specific function of HC as an effective reductant for NOx reduction reaction. As a first step, the deNOx performance was compared with three different reductant gases including CO, H2 and C3H6 in a modified synthetic gas bench equipped with a gas injector which enables continuous small amount of injections. At inlet gas temperature of 450 °C C3H6 showed the best deNOx performance whereas H2 was the best at 150 °C. Moreover the result of temperature programmed desorption showed that intermediate species represented by –NCO (isocyanates) produced from C3H6 was thermally more stable than that produced from CO. These results confirmed that the injected HC reacts with adsorbed NOx on NSR catalyst generating thermally stable intermediates, which could contribute the high deNOx performance at high temperature conditions.  相似文献   

4.
The selective reduction of nitrogen dioxide and nitrogen monoxide by olefins (ethene, propene) has been studied over two different -aluminium oxides in the temperature range 473–873 K. Nitrogen dioxide was reduced more effectively than nitrogen monoxide with both, ethene and propene, as a reductant. At temperatures exceeding 700 K, ammonia was formed as a by-product over one type of alumina. Concentrations in the range 30–40 ppm were determined for propene in combination with both, NO and NO2, while no ammonia was produced with ethene as a reductant. In addition, significant formation of hydrogen cyanide up to 70 ppm was observed with propene over both aluminium oxides starting from either NO or NO2. In contrast, hydrogen cyanide formation remained below 10 ppm with ethene as a reductant. Nitrous oxide formation did not exceed 10 ppm for all investigations. The results show that for alumina catalysts ethene is a more suitable reductant than propene due to its lower tendency to form undesired by-products.  相似文献   

5.
The extent of the selective catalytic reduction (SCR) of nitric oxide to dinitrogen in the presence of excess oxygen is enhanced by the oxygen on several zeolite-based catalysts and using different reductants. When the catalyst is Cu-ZSM-5 and the reductant is a hydrocarbon, an NO2 intermediate has been suggested by several investigators. This work shows that at short residence times, with excess reductant and in the absence of oxygen, the NO2 itself is reduced only back to NO. Thus, for the selective reduction of NO2 to N2 (N-pairing) strongly oxidizing conditions are required, same as for the complete reduction of NO. In the presence of excess oxygen the activity of Cu-ZSM-5 in the NO + O2 reaction to form NO2 parallels the SCR in every respect. It is higher over Cu-ZSM-5 than on Cu/Al2O3 or on H-ZSM-5. The coppercontaining zeolite is also active in the decomposition of NO2 back to NO and O2 while the other catalysts are much less active. The inhibiting effect of water on the NO + O2 catalytic reaction is also parallel to the effect on SCR. This evidence strengthens the notion of an NO2 intermediate.  相似文献   

6.
The influence of ageing temperature, silver loading and type of reducing agent on the lean NO x reduction over silver–alumina catalysts was investigated with n-octane and bio-diesel (NExBTL) as reducing agent. The catalysts (2 and 6 wt% Ag–Al2O3) were prepared with a sol–gel method including freeze drying and the evaluation of NO x reduction and aging were performed using a synthetic gas-flow reactor. The results indicate a relatively high NO x reduction for both reducing agents. The hydrothermally treated 6 wt% Ag–Al2O3 sample displays a maximum NO x reduction of 78 % at 350 °C for n-octane as reductant and the corresponding value for NExBTL is 60 %. Furthermore, the catalysts show high durability and an increase in activity for NO x reduction after ageing at temperatures up to 650 °C, with n-octane as reducing agent.  相似文献   

7.
The influence of silver loading on the lean NOx reduction activity using methanol as reductant has been studied for alumina supported silver catalysts. In general, increasing the silver loading (0–3 wt%), in Ag–Al2O3, shifts or extends the activity window, for lean NOx reduction towards lower temperatures. In particular Ag–Al2O3 with 3 wt% silver is active for NOx reduction under methanol-SCR conditions in a broad temperature interval (200–500 °C), with high activity in the low temperature range (maximum around 300 °C) typical for exhaust gases from diesel and other lean burn engines. Furthermore, increasing the C/N molar ratio enhances the reduction of NOx. However, too high C/N ratios results in poor selectivity to N2.  相似文献   

8.
The partial oxidation of acetaldehyde and propionaldehyde on a TiO2 supported VOx catalyst in the presence of water vapor was investigated at temperatures from 120 to 280 °C. Depending on the kind of aldehyde and reaction temperature, the selective oxidation to the appropriate carboxylic acid and an oxidative splitting to lower carboxylic acids took place. Acetaldehyde was oxidized to acetic acid with selectivities up to 82 % at ~ 200 °C whereas propionic acid was formed only with selectivities of about 20 % at ~ 140 °C in the oxidation of propionaldehyde. The oxidative cleavage of propionaldehyde led to the formation of more acetic acid than formic acid, which was in agreement with the higher formation of COx compared to that in the acetaldehyde oxidation. The presence of water and the increasing concentration of oxygen in the feed was found to enhance the selectivity towards the formation of C1 to C3 carboxylic acids by inhibiting the total oxidation of aldehydes and carboxylic acids.  相似文献   

9.
The reduction of NO x stored over a Pt–Ba/Al2O3 Lean NO x Trap is analysed when H2, CO or heptane are used as reductants. In all cases, the reduction proceeds via a Pt-catalyzed process involving the formation of intermediate species like ammonia and isocyanates in the case of H2 and CO, respectively. No specific intermediates have been observed when heptane is used as reductant. It is claimed that the role of the reductant is to keep Pt in a reduced state; this favours nitrate decomposition and reduction over the Pt sites. The effect of water on the reaction is also investigated.  相似文献   

10.
Yellow-colored exhaust gas streams from internal engines or gas turbines, frequently referred to as “yellow plume,” contain nitrogen dioxide (NO2) at concentrations as low as 15 ppm. The process developed in this work for decolorizing the yellow plume is based on reduction of NO2 to NO utilizing a combination of a Pt catalyst and a reducing agent. A stoichiometric excess of carbon monoxide, diesel oil, methanol or ethanol were used as reducing agents. Depending on the type of the reductant, the active temperature window of NO2 reduction was varied with methanol and CO being active at lower temperatures and ethanol and diesel oil at higher temperatures. By changing the Pt loading of the catalysts the active temperature window of NO2 reduction was also changed, higher loading Pt catalysts being active at lower temperatures. This scheme of NO2 reduction process was verified in a pilot-scale test with the real exhaust gas from the gas turbine power plant, showing 96% of NO2 reduction at the stack temperatures of 102–123 °C and at space velocities of 28,000–95,000 h−1 with inherent CO in the exhaust gas as the reducing agent.  相似文献   

11.
Nitromethane (NM) is a very efficient reductant for converting NO2 to N2 over Ag/Y: Between 140 °C and 400 °C, the N2 yield is close to 100%. This high N2 yield results from the ability of Ag/Y to effectively catalyze the reaction between NM and NO2. This high catalytic activity of Ag/Y is minimally affected by surface bound CN, NC, or acetate, all of which are stable at temperatures below ∼300 °C. At T ≥ 400 °C, there is a reaction path that yields N2 from NM even in the absence of NO2. However even at 400 °C, under typical deNO x conditions, most N2 molecules are formed as a result of the reaction of NM and NO2.  相似文献   

12.
Nova  Isabella  Castoldi  Lidia  Lietti  Luca  Tronconi  Enrico  Forzatti  Pio 《Topics in Catalysis》2007,42(1-4):21-25
The reduction process of NOx species stored over Pt-Ba/Al2O3 Lean NOx Trap systems is analysed in this paper when H2 is used as a reductant. The effect of different experimental conditions (temperature, reductant concentration, adsorption lengths, etc.) is addressed and discussed in relation to the selectivity and the efficiency of the reduction process.  相似文献   

13.
The biological reduction of nitric oxide (NO) in aqueous solutions of FeEDTA is an important key reaction within the BioDeNOx process, a combined physico‐chemical and biological technique for the removal of NOx from industrial flue gasses. To explore the reduction of nitrogen oxide analogues, this study investigated the full denitrification pathway in aqueous FeEDTA solutions, ie the reduction of NO3?, NO2?, NO via N2O to N2 in this unusual medium. This was done in batch experiments at 30 °C with 25 mmol dm?3 FeEDTA solutions (pH 7.2 ± 0.2). Also Ca2+ (2 and 10 mmol dm?3) and Mg2+ (2 mmol dm?3) were added in excess to prevent free, uncomplexed EDTA. Nitrate reduction in aqueous solutions of Fe(III)EDTA is accompanied by the biological reduction of Fe(III) to Fe(II), for which ethanol, methanol and also acetate are suitable electron donors. Fe(II)EDTA can serve as electron donor for the biological reduction of nitrate to nitrite, with the concomitant oxidation of Fe(II)EDTA to Fe(III)EDTA. Moreover, Fe(II)EDTA can also serve as electron donor for the chemical reduction of nitrite to NO, with the concomitant formation of the nitrosyl‐complex Fe(II)EDTA–NO. The reduction of NO in Fe(II)EDTA was found to be catalysed biologically and occurred about three times faster at 55 °C than NO reduction at 30 °C. This study showed that the nitrogen and iron cycles are strongly coupled and that FeEDTA has an electron‐mediating role during the subsequent reduction of nitrate, nitrite, nitric oxide and nitrous oxide to dinitrogen gas. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
Sjövall  Hanna  Fridell  Erik  Blint  Richard J.  Olsson  Louise 《Topics in Catalysis》2007,42(1-4):113-117
The selective catalytic reduction of nitrogen oxides with ammonia as the reducing agent was studied using Fourier transform infrared (FTIR) spectroscopy. The adsorbed species found on a Cu-ZSM-5 powder during exposure to NO, NO2 or NH3 was compared to the adsorbed species identified during SCR conditions. A blocking effect caused by ammonia at 175 °C was investigated by a stepwise increase of the ammonia concentration, and the spectra indicated that the formation of nitrites or nitrates decreased as surface coverage of ammonia increased. No such effect was observed at 350 °C, since the oxidation of ammonia results in very low ammonia coverage. The effect of changes in the NO to NO2 ratio was also studied at 350 °C, and the species identified during SCR reaction indicated that the enhanced activity at equimolecular amounts of NO and NO2 possibly involves gas phase components as well as adsorbed species.  相似文献   

15.
The aim of the present work is to study the selective reduction of NOx from natural gas sources. The unburned methane can be used as reductant. Another reductant such as hydrogen can be created in situ, using a microreformer. The results suggest that the NOx are reduced by H2 at low temperature, when methane is not activated and at higher temperature the methane is then the main reductant. However, the catalytic behaviour depends on the metal precursor and the catalyst treatment. The most prominent result is obtained on the palladium catalyst prepared from Pd(NH3)4(NO3)2 precursor. Comparing the reduction and the calcination step in the course of catalyst preparation, one can conclude that calcination lead to the higher activity in deNOx, since reduced catalysts are oxidized during the deNOx process.  相似文献   

16.
Catalytic activity for NO reduction with propene was investigated at 0–80 ppm SO2. NO was reduced more efficiently by propene on SO2-treated than untreated catalyst. Simultaneously, combustion of reductant was observed to lower NO reduction efficiency. Thus, the role of surface-adsorbed SO x species was regarded as depressing reductant combustion. NH3 adsorption revealed that SO2 treatment increased Bronsted acidity of the Ag/Al2O3 catalyst, which promoted propene activation. Reductant activation is a more important step, compared with NO activation to oxidative nitrate species. The NCO species, an index intermediate in NO x reduction, was produced on SO2-adsorbed Ag/Al2O3 at a lower temperature (473 K) than on the untreated catalyst. The reductive intermediates at low temperature are suggested to be alcohol, or aldehyde-adsorbed species, based on observed C=O band.  相似文献   

17.
The effects of using NO or NO2 as the NO X source on the performance of a NO X storage/reduction catalyst were investigated from 200 to 500 °C. The evaluation included comparison with constant cycling times and trapping the same amount of NO X during the lean phase. With NO2 as the NO X source, better trapping and reduction performance was attained in comparison to NO, at all operating temperatures except 300 °C. This exception, under the conditions tested, was likely due to high NO oxidation activity and rapid trapping of NO2, although it is expected that extending the trapping time would lead to consistent differences. Several reasons for the observed improvements at 200, 400 and 500 °C with NO2 relative to NO are discussed. One that can explain the data, for both trapping and release improvement, is treating the monolith as an integral reactor. With NO2, more NO X is trapped at the very inlet of the catalyst, whereas with NO, the maximum in trapping during cycling occurs slightly downstream. Thus more of the catalyst can be used for trapping with NO2 as the NO X source. The decreased release during catalyst regeneration is similarly explained; with more being released at the very inlet, there is more residence time and therefore contact with downstream Pt sites, but more importantly more interaction between reductant and stored NO X . NH3 and N2O measurements support this conclusion.  相似文献   

18.
The reduction of NO x stored over a Pt–K/Al2O3 Lean NO x Trap is analyzed when H2 is used as reductant. An in series 2-steps process is herein proposed, involving at first the formation of NH3 upon reaction of nitrates with H2 (step 1), followed by the reaction of NH3 with residual nitrates to give N2 (step 2).  相似文献   

19.
Mahzoul  H.  Gilot  P.  Brilhac  J.-F.  Stanmore  B.R. 《Topics in Catalysis》2001,16(1-4):293-298
A conventional NO x -trap catalyst containing platinum, rhodium, barium and lanthanum was conditioned with oxygen at 500°C, preloaded with NO under standard oxidising conditions and then subjected to regeneration with the reductants H2, CO and C3H6, either alone or as a mixture. Hydrogen is the most efficient reductant in terms of NO x conversion efficiency and reductant usage efficiency. There is a temperature optimum for CO between 300 and 400°C and a catalyst loading optimum (mols reductant added)/(mols NO x adsorbed) between 1.5 and 3.0. The behaviour of the catalyst towards sulphur poisoning was examined in supplementary trials with the adsorption of SO2 in the presence or absence of water vapour. When water is not present in both adsorption and reduction steps, very stable sulphates are formed, unattacked by reductants even at 1000°C. Sulfates are more easily reduced when water is present in the reductant mixture.  相似文献   

20.
The catalytic performances of metal-exchanged ZSM5, perovskite and γ-alumina catalysts for the reduction of nitrogen dioxide (NO2) by diesel soot were investigated. The reaction tests were performed through temperature-programmed reaction (TPR), in which NO2 and O2 were passed through a fixed bed of catalyst-soot mixture. On the three types of catalyst, NO2 was reduced to N2 by model soot (Printex-U) and most of the soot was converted into CO2. Pt-, Cu- and Co-exchanged ZSM5 catalysts exhibited reduction activities with conversions of NO2 into N2 of about 20%. Among the perovskite catalysts tested, La0.9K0.1FeO3 showed a 32% conversion of NO2 into N2. The catalytic activities of the perovskite catalysts were largely influenced by the number and stability of oxygen vacancies. For the γ-alumina catalyst, the peak reduction activity appeared at a relatively high temperature of around 500 °C, but the NO2 reduction was more effective than the NO reduction, in contrast to the results of the ZSM-5 and perovskite catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号