首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iridium carbonyl clusters in NaY zeolite have been prepared from adsorbed [Ir(CO)2(acad)]. The infrared spectra and the yellow color of the sample are consistent with the formation of Ir4(CO)12] in the zeolite cages, presumably the product of reductive carbonylation of the mononuclear precursor. The iridium carbonyl cluster in the zeolite could be decarbonylated by treatment with flowing H2 at 300 ° C and 1 atm and recarbonylated by treatment with CO at 40 °C and 1 atm. The carbonylation/decarbonylation process is reversible, provided that the temperature of the decarbonylation is low, which suggests that the decarbonylated clusters may be Ir4. Treatment of the sample in H2 at 425 ° C and 1 atm led to the formation of particles or iridium metal outside the zeolite pores.  相似文献   

2.
Some Ru and Co carbonyl clusters in zeolite pores such as Ru3(CO)12/NaY, [HRu6(CO)18]/NaY, [Ru6(CO)18]2–/NaX, Co4(CO)12/NaY and Co6(CO)16/NaY were prepared by the ship-in-bottle technique, and characterized by FTIR and EXAFS. The RuCo bimetallic carbonyl cluster was prepared by reductive carbonylation of the oxidized RuCo/NaY, which provides the proposed assignment to [HRUCo3(CO)12]/NaY. The tailored Ru, RuCo and Co catalysts were prepared by H2 reduction from the precursors, e.g. Ru, RuCo bimetallic and Co carbonyl clusters impregnated on SiO2 and entrapped in NaY and NaX zeolites. The RuCo bimetallic carbonyl cluster-derived catalysts showed substantially higher activities and selectivities for oxygenates such as C1–C5 alcohols in CO hydrogenation (CO/H2 = 0.33-1.0, 5 bar, 519–543 K). By contrast, hydrocarbons such as methane were preferentially obtained on the catalysts prepared from Ru6, Ru3 and Co4 carbonyl clusters and provided lower CO conversion and poor selectivities for oxygenates. The RuCo bimetals are proposed to be associated with the selective formation of higher alcohols in CO hydrogenation.  相似文献   

3.
Bimetallic MgO-supported catalysts were prepared by adsorption of Pt3Ru6(CO)213-H)(μ-H)3 on porous MgO. Characterization of the supported clusters by infrared (IR) spectroscopy showed that the adsorbed species were still in the form of metal carbonyls. The supported clusters were decarbonylated by treatment in flowing helium at 300 °C, as shown by IR and extended X-ray absorption fine structure (EXAFS) data, and the resulting supported PtRu clusters were shown by EXAFS spectroscopy to have metal frames that retained Pt–Ru bonds but were slightly restructured relative to those of the precursor; the average cluster size was almost unchanged as a result of the decarbonylation. These are among the smallest reported bimetallic clusters of group-8 metals. The decarbonylated sample catalyzed ethylene hydrogenation with an activity similar to that reported previously for γ-Al2O3-supported clusters prepared in nearly the same way and having nearly the same structure. Both samples were also active for n-butane hydrogenolysis, with the MgO-supported catalyst being more active than the γ-Al2O3-supported catalyst.  相似文献   

4.
A series of ZnO promoted Co/CeO2 catalysts were synthesized and characterized using XRD, TEM, H2-TPR, CO chemisorption, O2-TPO, IR-Py, and CO2-TPD. The effects of ZnO on the catalytic performances of Co/CeO2 were studied in ethanol steam reforming. It was found that the addition of ZnO facilitated the oxidation of Co0 via enhanced oxygen mobility of the CeO2 support which decreased the activity of Co/CeO2 in C–C bond cleavage of ethanol. 3 wt% ZnO promoted Co/CeO2 exhibited minimum CO and CH4 selectivity and maximum CO2 selectivity. This resulted from the combined effects of the following factors with increasing ZnO loading: (1) enhanced oxygen mobility of CeO2 facilitated the oxidation of CH x and CO to form CO2; (2) increased ZnO coverage on CeO2 surface reduced the interaction between CH x /CO and Co/CeO2; and (3) suppressed CO adsorption on Co0 reduced CO oxidation rate to form CO2. In addition, the addition of ZnO also modified the surface acidity and basicity of CeO2, which consequently affected the C2–C4 product distributions.  相似文献   

5.
The controlled pyrolysis of transition metal cluster substituted metal carboxylates, e.g., M4O[(CO)9Co3CCO2]6, where M = Co and Zn, and M'2(CO)9Co3CCOO4, where M' = Co, Mo, and Cu, results in the formation of high surface area, amorphous solids that are active and selective catalysts for the hydrogenation of crotonaldehyde. In contrast to conventional metal catalysts that are selective for the double bond hydrogenation, these new solids exhibit high regioselectivities for the conversion of crotonaldehyde (2-butenal) to crotyl alcohol (2-butenol). Further, the observed selectivities depend on the metal cluster carboxylate structure.  相似文献   

6.
A new 2D coordination polymer with the formula [Co43-OH)2(H2nip-2H)2(H2nip-H)2(bpe)2]n (1) (H2nip = 5-nitro-isophthalic acid, bpe = trans-1,2-bis(4-pyridyl)ethylene), has been hydrothermally synthesized and structurally characterized. The structure of 1 is built around uncommon, rhombic {Co4} clusters with double Td and double Oh Co(II) geometries, which are extended into 2D network by the rigid deprotonated H2nip and bpe bridges. Magnetic property study indicates there is weak antiferromagnetic coupling interaction between Co(II) ions, which mainly arises from the antiferromagnetic coupling interaction in the tetramer, based on the nature of the μ3-hydroxyl group and synsyn carboxylate-bridged modes.  相似文献   

7.
Hydroformylation of ethylene and CO hydrogenation were studied over cobalt-based catalysts derived from reaction of Co2(CO)8 with ZnO, MgO and La2O3 supports. At 433 K a similar activity sequence was reached for both reactions: Co/ ZnO > Co/La2O3 > Co/MgO. This confirms the deep analogy between hydroformylation and CO hydrogenation into alcohols. In the CO hydrogenation the selectivity towards alcohol mixture (C1-C3) was found to be near 100% at 433 K for a conversion of 6% over the Co/ZnO catalyst; this catalyst showed oxo selectivity higher than 98% in the hydroformylation of ethylene. Magnetic experiments showed that no metallic cobalt particles were formed at 433 K. It is suggested that the active site for the step that is common to both reactions is related to the surface homonuclear Co2+/[Co(CO)4] ion-pairing species.  相似文献   

8.
Results of the characterization of six Co-based Fischer–Tropsch (FT) catalysts, with 15% Co loading and supported on SiO2 and Al2O3, are presented. Room temperature X-ray diffraction (XRD), temperature and magnetic field (H) variation of the magnetization (M), and low-temperature (5 K) electron magnetic resonance (EMR) are used for determining the electronic states (Co0, CoO, Co3O4, Co2+) of cobalt. Performance of these catalysts for FT synthesis is tested at reaction temperature of 240 °C and pressure of 20 bars. Under these conditions, 15% Co/SiO2 catalysts yield higher CO and syngas conversions with higher methane selectivity than 15% Co/Al2O3 catalysts. Conversely the Al2O3 supported catalysts gave much higher selectivity towards olefins than Co/SiO2. These results yield the correlation that the presence of Co3O4 yield higher methane selectivity whereas the presence of Co2+ species yields lower methane selectivity but higher olefin selectivity. The activities and selectivities are found to be stable for 55 h on-stream.  相似文献   

9.
The ionic coupling of the carbonyl cluster anion [Os3Co(CO)13] (1) with [Ru(η5-C5H5)(NCMe)3]+ affords the new pentanuclear triheterometallic cluster Os3CoRu(CO)13(η5-C5H5) (2) as well as the known bimetallic cluster compounds HOs3Ru(CO)11(η5-C5H5) and Os3Ru2(CO)11(η5-C5H5)2. The crystal structure of cluster 2 shows that the metal framework is based on a trigonal bipyramid (approximate Cs symmetry) with the Ru, Co and an Os atom occupying the equatorial metal plane.  相似文献   

10.
Metallic cobalt clusters are synthesized inside the cages of NaY zeolite by a method including four steps, i.e.: (1) ion exchange, (2) precipitation of exchanged cobalt cations, (3) calcination and (4) reduction of the calcined oxide nano-particles inside the zeolite. As compared with that prepared by the ion exchange followed directly by calcination and reduction and that by the conventional impregnation method, the sample by this four-step method exhibits higher CO conversion and higher selectivity to n-C10–C20 paraffins in Fischer–Tropsch (FT) synthesis. The small metallic cobalt clusters inside the supercages of NaY zeolite probably account for the high catalytic performances.  相似文献   

11.
Co/CuZnO is known as a base metal catalyst active for C2+ oxygenate synthesis. This study probed the interactions of the different components of Co/CuZnO catalysts on CO hydrogenation using Fischer–Tropsch synthesis (250 °C, H2/CO = 2) and SSITKA. Only combination of all three metal components produced a catalyst with relatively high C2+ oxygenate selectivity, but with much lower activity compared to that for Co/Al2O3. In situ reaction characterizations, albeit at somewhat different conditions than alcohol synthesis, helped explain interaction of the components. SSITKA, under methanation conditions, indicated that the most striking feature for the combination of Co with ZnO and/or Cu was a much decreased amount of reaction intermediates. Ethane hydrogenolysis results suggested that the different components for these catalysts were in close contact and few or no large ensembles (n ? 12) of Co atoms existed, confirming that ZnO and/or Cu covered/blocked a substantial number of active sites on Co for CO hydrogenation.  相似文献   

12.
Highly selective capture of methane from nitrogen is considered to be a feasible approach to improve the heating value of methane and mitigate the effects of global warming. In this work, an ultramicroporous squarate‐based metal‐organic framework (MOF), [Co3(C4O4)2(OH)2] (C4O42? = squarate), with enhanced negative oxygen binding sites was synthesized for the first time and used as adsorbent for efficient separation of methane and nitrogen. Adsorption performance of this material was evaluated by single‐component adsorption isotherms and breakthrough experiments. Furthermore, density functional theory calculation was performed to gain the deep insight into the adsorption binding sites. Compared with the other state‐of‐the‐art materials, this material exhibited the highest adsorption selectivity (8.5–12.5) of methane over nitrogen as well as the moderate volumetric uptake of methane (19.81 cm3/cm3) under ambient condition. The unprecedented selectivity and chemical stability guaranteed this MOF as a candidate adsorbent to capture CH4 from N2, especially for the unconventional natural gas upgrading. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3681–3689, 2018  相似文献   

13.
Z.H. Wang  C.J. Choi  J.C. Kim 《Carbon》2003,41(9):1751-1758
Carbon-coated cobalt nanocapsules were synthesized by the chemical vapor-condensation process with cobalt carbonyl (Co2(CO)8) used as precursor and carbon monoxide (CO) as carrier gas. The characterization and magnetic properties of carbon-coated cobalt nanocapsules were investigated systematically. The transmission electron microscope (TEM) images showed that the as-prepared nanoparticles consist of a metal core and an amorphous carbon shell. X-ray diffraction and TEM selected area diffraction revealed the presence of f.c.c. Co phase, h.c.p. Co phase, and minority Co2C, Co3C phases. The saturation magnetization at room temperature of the nanocapsules is 146.9 Am2 kg−1, which is 90% of the bulk ferromagnetic element counterpart. The coercive force at room temperature of the nanocapsules is 0.12 T, while the ratio of remnant to saturation magnetization Mr/Ms is about 0.4. The saturation magnetization and the coercive force increase with increasing the decomposition temperature, mainly due to the increase of the size of the magnetic particles. The decomposition of the cobalt carbonyl (Co2(CO)8) and CO gas can decrease efficiently the oxygen content in nanocapsules. The metallic Co nanoparticles completely coated by carbon can resist the dilute acid erosion as well as the oxidation. The thermal stability of the Co nanocapsules is also studied.  相似文献   

14.
Benzyl and trans-cinnamyl alcohols are heterogeneously oxidised to the corresponding aldehydes by O2 in liquid phase at 100 °C and ambient pressure using hydrous binary PdII–M oxides (M=CoIII, FeIII, MnIII and CuII) as catalysts. Modification of PdII oxide with transition metal cations greatly improves the catalytic activity and selectivity to aldehydes, CoIII and FeIII being the most effective promoters. In benzyl alcohol oxidation in toluene solution, the Pd–Co system gives 85–100% selectivity to aldehydes at 53–95% alcohol conversion in 15–60 min reaction time. The catalyst can be re-used without loss of its activity and selectivity. The presence of a certain amount of water in the catalysts is essential for their performance. From TGA, the composition of the optimal Pd–Co catalyst can be approximated as PdO·(0.13–1.0)CoO(OH)·(2–3)H2O. The oxidation of alcohols on Pd–M oxide catalysts is accompanied by transfer hydrogenation and decarbonylation side reactions, which is similar to the oxidation on the palladium metal. This indicates that the oxidation of alcohols on Pd–M oxide catalysts occurs via a dehydrogenation mechanism, with hydrogen being present on the catalyst surface.  相似文献   

15.
The atmospheric hydroformylations of ethylene and propylene were investigated over SiO2-supported Rh4(CO)12, Co2(CO)8, Rh2Co2(CO)12 and RhCo3(CO)12-derived catalysts. The bimetal cluster-derived catalysts showed excellent activities for the formation of oxygenates. In situ IR study on partially dehydroxylated SiO2-supported RhCo3(CO)12 suggested that the bimetal cluster framework may be preserved after decarbonylation under H2 at 623 K and may be recarbonylated at room temperature. A strong physisorption of RhCo3 (CO)12 on SiO2 is proposed, due to a nucleophilic attack of surface oxygen on the Co atoms, which promotes a metal-support interaction and thus stabilizes the bimetal cluster framework. A subcarbonyl bimetal cluster is thought to be the actual catalytic species on the surface.  相似文献   

16.
S. Tang  J. Lin  K.L. Tan 《Catalysis Letters》1999,59(2-4):129-135
The partial oxidation of methane to synthesis gas was studied at atmospheric pressure and in the temperature range of 550–800°C over -Al2O3-supported bimetallic Pt–Co, and monometallic Pt and Co catalysts, respectively. Both methane conversion and CO selectivity over a bimetallic Pt0.5Co1 catalyst were higher than those over monometallic Pt0.5 and Co1 catalysts. Furthermore, the addition of platinum in Pt–Co bimetallic catalysts effectively improved their resistance to carbon deposition with no coking occurring on Pt0.5Co1 during 80 h reaction. The FTIR study of CO adsorption observed only linearly bonded CO on bimetallic Pt–Co catalysts. TPR and XPS showed enhanced formation of a cobalt surface phase (CSP) in bimetallic Pt–Co catalysts. The origins of the good coking resistivity of bimetallic Pt–Co catalysts were discussed.  相似文献   

17.
A series of Co–Cu composite oxides with different Co/Cu atomic ratios were prepared by a co-precipitation method. XRD, N2 sorption, TEM, XPS, H2-TPR, CO-TPR, CO-TPD and O2-TPD were used to characterize the structure and redox properties of the composite oxides. Only spinel structure of Co3O4 phase was confirmed for the Co–Cu composite oxides with Co/Cu ratios of 4/1 and 2/1, but the particle sizes of these composite oxides decreased evidently compared with Co3O4. These composite oxides could be reduced at lower temperatures than Co3O4 by either H2 or CO. CO and O2 adsorption amounts over the composite oxides were significantly higher than those over Co3O4. These results indicated a strong interaction between cobalt and copper species in the composite samples, possibly suggesting the formation of Cu x Co3?x O4 solid solution. For the preferential oxidation of CO in a H2-rich stream, the Co–Cu composite oxides (Co/Cu = 4/1–1/1) showed distinctly higher catalytic activities than both Co3O4 and CuO, and the formation of Cu x Co3?x O4 solid solution was proposed to contribute to the high catalytic activity of the composite catalysts. The Co–Cu composite oxide was found to exhibit higher catalytic activity than several other Co3O4-based binary oxides including Co–Ce, Co–Ni, Co–Fe and Co–Zn oxides.  相似文献   

18.
An examination was made of the adsorption of some metallic cluster carbonyls (MCCs), Co2Rh2(CO)12, Co3Rh(CO)12, Co4(CO)12, Ir4(CO)12, Rh6(CO)16, and Ru3(CO)12, from nonaqueous solution onto two typical catalyst supports, γ-alumina and Aerosil silica. With two MCCs, Co2Rh2(CO)12 and Ir4(CO)12, dispersed metallic catalysts were generated, and a study was made of how the main experimental conditions affected the metallic dispersion. MCC adsorption was more facile on γ-alumina than on silica and was often assisted by the presence of oxygen. An ir study showed that initial adsorption of Co2Rh2(CO)12 on γ-alumina occurred with the loss of bridging carbonyls, the remaining carbonyls being progressively lost at temperatures >300 K, while adsorption of Ir4(CO)2 on γ-alumina resulted in progressive carbonyl loss at 320–620 K. Strong adsorption involves carbonyl loss, probably by ligand exchange with a surface anion, and the effect of oxygen is probably oxidative decarbonylation. Catalysts prepared from Co2Rh2(CO)12 or Ir4(CO)12 were relatively highly dispersed (D ≈ 0.4-1 depending on conditions), and Co2Rh2(CO)12 gave a much higher dispersion than was obtained by conventional impregnation using aqueous salt solutions. MCC adsorption in the presence of oxygen favored higher dispersions.  相似文献   

19.
Co/Rh heterobimetallic nanoparticles were prepared from cobalt‐rhodium carbonyl clusters [Co2Rh2(CO)12 and Co3Rh(CO)12] and immobilized on charcoal. HR‐TEM revealed that the size of the heterobimetallic nanoparticles was ca. 2 nm and ICP‐AES analysis showed a 2 : 2 and a 3 : 1 cobalt‐rhodium stoichiometry (Co2Rh2 and Co3Rh1) in the heterobimetallic nanoparticles. The Co/Rh heterobimetallic nanoparticles immobilized on charcoal were used as a catalyst in the Pauson–Khand‐type reaction under 1 atm of CO. The catalytic reactivity was highly dependent upon the ratio of Co : Rh with the highest reactivity being observed when the ratio was 2 : 2 (Co2Rh2). The Co2Rh2 immobilized catalyst is quite an effective catalyst for intra‐ and intermolecular Pauson–Khand‐type reactions. When the immobilized Co2Rh2 catalyst was used as a catalyst in the Pauson–Khand‐type reaction in the presence of an aldehyde instead of carbon monoxide, the catalytic system was highly efficient. When the reaction was carried out in the presence of chiral diphosphines, ee values up to 87% were observed. The catalytic system can be reused at least five times in the presence of chiral diphosphines without loss of catalytic activity and enantioselectivity. The addition of Hg(0), a known heterogeneous catalyst poison, completely inhibits further catalysis. Thus, an environmentally friendly and sustainable process was developed.  相似文献   

20.
The reaction of Pt2Ru4(CO)18 (1) with o-bis(phenylethynyl)benzene (2) has yielded the product Pt2Ru4(CO)14[μ5-C6H4(C2Ph2)2] (3) which exhibits an unexpected ‘raft’ structure for the six metal atoms. Both alkyne groups are coordinated to the same side of the cluster as triple bridges across neighboring PtRu2 triangles. Compound 3 has two valence electrons less than the 90 electron configuration usually observed for raft clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号