首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We experimentally demonstrate dynamic dispersion compensation using a novel nonlinearly chirped fiber Bragg grating in a 10-Gb/s system. A single piezoelectric transducer continuously tunes the induced dispersion from 300 to 1000 ps/nm. The system achieves a bit-error rate=10-9 after both 50 and 104 km of single-mode fiber by dynamically tuning the dispersion of the grating between 500 and 1000 ps/nm, respectively. The power penalty after 104 km is reduced from 3.5 to <1 dB  相似文献   

2.
We propose a tunable optical dispersion compensator (TODC) that uses an arrayed waveguide grating (AWG) and a flat mirror. The TODC employs simple and cost-effective optics, and its chromatic dispersion can be changed simply by translating the AWG. We obtained a 3-dB bandwidth of 39 GHz when the dispersion was tuned within 800 ps/nm, and a maximum dispersion of ${pm}$3000 ps/nm.   相似文献   

3.
A design for a chromatic dispersion equalizer that provides 4.4 times higher efficiency in the dispersion compensation characteristics, compared with a conventional equalizer, is proposed. In addition, the amplitude response slope in the frequency domain is less than half of the conventional characteristic. This extends the compensation limit for chromatic dispersion up to 82500 ps/nm for a 2.5-Gb/s heterodyne system, which corresponds to a 4900-km normal dispersion fiber transmission system. A compensation method for modulational instability is also proposed. The method was confirmed by a 2.5-Gb/s continuous-phase frequency-shift-keying (CPFSK) 764-km normal dispersion fiber transmission experiment, with the abovementioned chromatic dispersion equalizer. Employing computer simulations, an over-1000-km normal dispersion fiber optical repeater transmission system with 2.5-Gb/s CPFSK heterodyne detection was shown to be feasible  相似文献   

4.
We present a metal-organic-chemical-vapor-deposition-grown low-optical-insertion-loss InGaAsP/InP multiple-quantum-well electroabsorption modulator (EAM), suitable for both nonreturn-to-zero (NRZ) and return-to-zero (RZ) applications. The EAM exhibits a dynamic (RF) extinction ratio of 11.5 dB at 1550 nm for 3 Vp-p drive under 40-Gb/s modulation. The optical insertion loss of the modulator in the on-state is -5.2 dB at 1550 nm. In addition, the EAM also exhibits a 3-dB small-signal response (S21) of greater than 38 GHz, allowing it to be used in both 40-Gb/s NRZ and 10-Gb/s RZ applications. The dispersion penalty at 40 Gb/s is measured to be 1.2 dB over /spl plusmn/40 ps/nm of chromatic dispersion. Finally, we demonstrate 40-Gb/s transmission performance over 85 km and 700 km.  相似文献   

5.
In this letter, we numerically study the relationship between 40-Gb/s-based dense wavelength-division-multiplexing (DWDM) transmission performance and chromatic dispersion in two different transmission lines. We show that the optimum chromatic dispersion region for improving the DWDM transmission performance varies with the type of transmission line. We also show that a hybrid transmission line has a greater potential to resist any change in the dispersion slope compensation characteristics than a single fiber transmission line with a dispersion compensation fiber module. Finally, we show that chromatic dispersion of more than 12 ps/nm/km in a hybrid transmission line is optimum for a 40-Gb/s-based DWDM transmission system by taking the design of a dispersion compensating fiber into account.  相似文献   

6.
We demonstrate the first programmable group-delay module based on polarization switching. With a unique binary tuning mechanism, the device can generate any differential group delay value from -45 to +45 ps with a resolution of 1.40 ps, or any true-time-delay value from 0 to 45 ps with a resolution of 0.7 ps. The delay varying speeds for both applications are under 1 ms and can be as fast as 0.1 ms. We evaluate both the dynamic and static performances of the device while paying special attention to its dynamic figures of merit for polarization-mode dispersion emulation and compensation applications. Our experiment shows that the device exhibits a negligible transient-effect induced power penalty (<0.2 dB) in a 10-Gb/s nonreturn-to-zero system.  相似文献   

7.
In this paper, we report the performance-analysis results of our proposed high-speed and low-cost feedback-control method of a tunable-dispersion compensator (TDC) for adaptive dispersion compensation in all-optical dynamic-routing networks. In this method, we monitor the received waveform in the time domain and control a TDC repeatedly to reshape the waveform by means of the steepest descent method. Transmission experiments and simulations show that the proposed method can compensate for the dispersion quickly over a wide dispersion range. The compensation range is from $-$6000 to 6000 ps/nm in 10-Gb/s transmission. The compensation time is 1–2 s for dispersions within 1000 ps/nm. This method is applicable to the adaptive dispersion compensation in all-optical dynamic-routing networks.   相似文献   

8.
We present an optical tunable chromatic dispersion compensator based on a virtually imaged phased-array and spatial light modulator providing both positive and negative dispersion. We demonstrate tunable dispersion compensation of 10-Gb/s positively chirped nonreturn-to-zero data signal over a range of$-4080sim+850$ps/nm (240-km single-mode fiber to 9.5-km dispersion-compensating fiber), which operates independent of the input state of polarization and has potential capability for wavelength-division multiplexing.  相似文献   

9.
We have developed tunable dispersion equalizers with a chirped fiber grating on the divided thin-film heater. The divided thin-film heater took an important role in the control of dispersion and dispersion slope. We successfully demonstrated the dispersion control from -304 to -196 ps/nm, the dispersion slope control from +100 to -300 ps/nm2, and good performance in 40-Gb/s return-to-zero transmission by using this tunable dispersion equalizer  相似文献   

10.
We demonstrate an adjustable polarization-mode-dispersion (PMD) compensator. The device uses a nonlinearly chirped fiber Bragg grating written into a high-birefringence photosensitive fiber. By mechanically stretching the grating, the device generates a time delay between different polarizations that is adjustable from 100 to 320 ps and is tunable over 2.3 nm. We demonstrate tunable PMD compensation of a 10-Gb/s signal that has an initial delay between the two polarization states of 127 or 302 ps  相似文献   

11.
A new method for chromatic-dispersion compensation is proposed and demonstrated. This method can produce a chromatic dispersion practically in a wide range from -2000 to +2000 ps/nm and can compensate simultaneously for the dispersion of over 60 wavelength channels with 100-GHz spacing in a wavelength-division multiplexed (WDM) system that has a total bandwidth of over 50 nm. This method has further attractive features such as very small polarization-state dependence, mechanically variable chromatic dispersion, and potential for small packaging. It was experimentally confirmed that this method compensated for the chromatic dispersion accumulated through 110 km standard single-mode fiber (SMF) at 1.55-μm wavelength and that 10-Gb/s signal quality was clearly recovered after the 110-km transmission  相似文献   

12.
We demonstrate unrepeated optical transmission of 20-Gb/s quadrature phase-shift-keying (QPSK) signals over a 200-km-long standard single-mode fiber (SMF) without using any optical dispersion compensator. By employing optical homodyne detection, which can restore the entire information of the complex amplitude of the transmitted signal, group-velocity dispersion (GVD) of the SMF can be compensated electrically by a linear equalizer at the receiver. From off-line bit-error-rate measurements, we find that a simple transversal filter implemented in digital signal processing circuits after homodyne detection can effectively cancel the fiber GVD of up to 4000 ps/nm, enabling successful 20-Gb/s QPSK transmission.  相似文献   

13.
We discuss options for upgrading coarse wavelength-division multiplexed (CWDM) optical access links over standard single-mode fiber (SSMF) by increasing per-channel data rates from 2.5 to 10 Gb/s. We identify electronic equalization and forward error correction (FEC) as the enabling technologies to overcome the dispersion limit of SSMF. In addition, we show how FEC enhances the tolerance to in-band crosstalk, and paves the way toward fully bidirectional CWDM transmission. Due to the lack of CWDM sources rated for 10-Gb/s operation, we demonstrate full-spectrum (1310 to 1610 nm) 10-Gb/s CWDM transmission over standard-dispersion fiber using uncooled, directly modulated lasers specified for 2.5 Gb/s. All 16 CWDM channels could be transmitted over more than 40 km, yielding a capacity-times-distance product of 6.4 Tb/s/km. The longest transmission distance (80 km) was achieved at 1610 nm, equivalent to 1600 ps/nm of chromatic dispersion.  相似文献   

14.
We propose effective polarization-mode dispersion (PMD) and chromatic dispersion (CD) compensation configuration for practical use in the field, taking into consideration the system cost and the field condition such as the CD changes due to fiber temperature dependence or transmission route change, and rapidly fluctuate state of polarization of the signal lightwave. Our configuration combines electric dispersion compensators (EDCs) with fixed taps in each channel with a multichannel tunable optical dispersion compensator (T-ODC) that can simultaneously compensate all channels' accumulated CD. We demonstrate widely extended $L$-band 43-Gb/s-based wavelength-division-multiplexing transmission over 450 km using our dispersion compensation configuration, and obtain effectiveness that the PMD penalty is suppressed by 2 dB at a differential group delay of 33 ps by using the EDC and that the CD penalty is improved by about 2 dB at the accumulated CD change of $+{/}-$ 30 ps/nm by using T-ODC and EDC.   相似文献   

15.
Results on postdetection compensation of group velocity dispersion (GVD) and differential group delay (DGD) in a 40-Gb/s optical single-sideband system are presented. An electrically adjustable transversal filter structure and a microstrip line are used as electrical compensators. Our results show that 408 ps/nm of GVD or 18 ps of DGD, considered separately, are compensated with less than 1.3-dB optical signal-to-noise ratio (OSNR) penalty to back-to-back without compensator, for an extinction ratio (ER) of 6 dB. The simultaneous effect of 12.3 ps of DGD and 374 ps/nm of GVD is compensated with less than 2-dB OSNR penalty, also for ER of 6 dB. Simulations performed support the experimental results.  相似文献   

16.
基于SOA啁啾管理的连续可调谐色度色散补偿的研究   总被引:1,自引:0,他引:1  
提出了一种新型的可小范围连续调谐的色度色散(CD)补偿方案.该CD补偿方案包括一个半导体光放大器(SOA)和一段固定长度的色散补偿光纤(DCF).利用SOA的交叉相位调制(XPM)效应,通过调节SOA的偏置电流和控制脉冲光的强度,可以对进入SOA的光信号引入不同大小的附加啁啾量,从而可以利用固定长度的DCF得到补偿后的无啁啾光信号.实验中,实现了10 Gb/s可调谐CD补偿器,在无需替换DCF的情况下,实现了补偿范围为-40 ps/nm到60 ps/nm的连续可调谐CD补偿.  相似文献   

17.
We propose and experimentally demonstrate an all-optical chromatic dispersion (CD) monitoring technique for phase-modulated signals utilizing the cross-phase-modulation effect between the input signal and the inserted continuous-wave probe. The probe's optical spectrum changes with the accumulated CD on the input signal, indicating that the optical power variations can be measured for monitoring. The experimental results show that this technique can monitor up to 120 ps/nm of CD for a 40-Gb/s return-to-zero differential phase-shift keying (RZ-DPSK) transmission system, with the maximum measured optical power increment of 16.5 dB. The applicability of this monitoring technique to higher bit-rate phase-modulated signals, such as 80-Gb/s RZ differential quadrature phase-shift keying and 80-Gb/s polarization-multiplexed RZ-DPSK, is also investigated via simulation.   相似文献   

18.
A novel label insertion technique, using an adaptive optical single sideband (OSSB) filter, is experimentally shown. The OSSB filter is used to suppress one of the sidebands of the 40-Gb/s payload signal, and a 2.5-Gb/s intensity modulated signal is inserted as a label in the suppressed sideband. Lower label-payload crosstalk is observed using the OSSB filter compared to the absence of sideband suppression, allowing a reduction of 5 dB in the label power without additional penalty. The enhanced tolerance to group velocity dispersion (GVD) of the payload is experimentally assessed and a 5-dB penalty is observed for 136 ps/nm of accumulated dispersion. Additionally, simulation results show the efficient use of electrical dispersion compensation to improve the GVD tolerance, allowing the doubling of the dispersion tolerance.  相似文献   

19.
We have developed a dispersion compensator that uses arrayed-waveguide gratings (AWGs) and a spatial filter. The compensator using AWGs with 380 waveguides in each array and the diffraction order of 53, can compensate a total second-order dispersion of 260 ps/nm with an eye-closure penalty of 1 dB for a 40-Gb/s nonreturn-to-zero (NRZ) signal. It is shown that the required spatial resolution of the spatial phase filter for compensation is 2.55 μm for silica AWGs of usual design. The acceptable fluctuation in the refractive index of the waveguides in the AWGs is as large as 5×10-5  相似文献   

20.
We have proposed a dispersion compensation scheme that uses a high-resolution arrayed-waveguide grating (AWG). When the diffraction order of the AWG is 59 and the number of waveguides in an arrayed-waveguide is 340, the calculated maximum second- and third-order dispersion compensation range is 18.0 ps/nm and ±6.0 ps/nm2 , and 1100 ps/nm and ±937.5 ps/nm2, for a 1 ps-pulse and a 12.5 ps-pulse, respectively. In experiments, second-order dispersion (-0.8 to +5.2 ps/nm) is effectively compensated for 1,1-ps pulses; and. Pulse compression by third-order dispersion compensation is successfully demonstrated  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号