首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The ability of manganese oxide coated zeolite (MOCZ) to adsorb copper and lead ions in single- (non-competitive) and binary- (competitive) component sorption systems was studied in fixed-bed column. The experiments were applied to quantify particle size, bed length, influent flow rate and influent metal concentration on breakthrough time during the removal of copper and lead ions from aqueous solutions using MOCZ column. Results of fixed-bed adsorption showed that the breakthrough time appeared to increase with increase of the bed length and decrease of influent metal concentration, but decreased with increase of the flow rate. The Thomas model was applied to adsorption of copper and lead ions at bed length, MOCZ particle size, different flow rate and different initial concentration to predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design. The model was found suitable for describing the adsorption process of the dynamic behavior of the MOCZ column. The total adsorbed quantities, equilibrium uptakes and total removal percents of Cu(II) and Pb(II) related to the effluent volumes were determined by evaluating the breakthrough curves obtained at different conditions. The results suggested that MOCZ could be used as an adsorbent for an efficient removal of copper and lead ions from aqueous solution. The removal of metal ion was decreased when other additional heavy metal ion was added, but the total saturation capacity of MOCZ for copper and lead ions was not significantly decreased. This competitive adsorption also showed that adsorption of lead ions was decreased insignificantly when copper ions was added to the influent, whereas a dramatic decrease was observed on the adsorption of copper ions by the presence of lead ions. The removal of copper and lead ion by MOCZ columns followed the descending order: Pb(II) > Cu(II). The adsorbed copper and lead ions were easily desorbed from MOCZ with 0.5 mol l(-1) HNO3 solution.  相似文献   

2.
Waste water of copper mines and copper processing plant contains both copper and selenium ions with other contaminants. In this paper simultaneous photoreductive removal of copper (II) and selenium (IV) is studied for the first time using spherical binary oxide photocatalysts under visible light. All the synthesized materials are found to be mesoporous in nature with reasonably high surface area. Among a range of hole scavengers, only EDTA (ethylene diamine tetraacetic acid) and formic acid are found to be the most active for the reduction reaction. A comparative study is carried out using both the hole scavengers varying reaction time, concentration, pH etc. For a single contaminant, EDTA is found to be the best for Cu(II) reduction whereas formic acid is the best for Se(IV) reduction. In a mixed solution both EDTA and formic acid perform very well under visible light irradiation. Highest photocatalytic reduction in a mixed solution is observed at pH 3. Among all the synthesized materials, TiZr-10 performs as the best photocatalyst for both Cu(II) and Se(IV) reduction. However under UV light, Degussa P25 performs slightly better than TiZr-10. Present study shows that 100 ppm of mixed solution can be removed under visible light in 40 min of reaction using TiZr-10 as catalyst. Photodeposited material is found to be copper selenide rather than pure copper and selenium metal. This indicates that the waste water containing copper and selenium ions can be efficiently treated under visible or solar light.  相似文献   

3.
Liquid-liquid extraction of lead(II) from succinate media was carried out with 2-octylaminopyridine (2-OAP) in chloroform. Lead(II) was quantitatively extracted with 0.036 M 2-OAP in chloroform from 0.005-0.007 M sodium succinate when equilibrated for 5 min. Lead(II) from the organic phase was stripped with three 10 mL portions of 0.4M acetic acid and determined titrimetrically with EDTA. The nature of extracted species was determined from the log-log plot. The optimum conditions have been evaluated based on a critical study of weak acid concentration, extractant concentration, period of equilibration and effect of diluents. The metal loading capacity of the reagent was found to be 8 mg of lead(II) with 10 mL 0.036 M of the extractant. The extraction of the lead(II) was carried out in presence of various ions to ascertain the tolerance limit of individual. Temperature dependence of the extraction equilibrium constants was examined to estimate the apparent thermodynamic functions (Delta H, DeltaS and Delta G) for extraction reaction. Lead(II) was successfully separated from commonly associated metal ions such as Bi(III), Hg(II), Cr(VI), Cd(II), Zn(II), Al(III), Ca(II), Ba(II) and from binary and ternary mixtures. The method was extended for determination of lead(II) in real samples.  相似文献   

4.
Many solid wastes contain both zinc and nickel at the same time. For recycling or recovery of metals, it is essential to separate materials. Among those materials, zinc and nickel are very difficult to be separated because there is not so much difference in the chemical and physical properties. This paper focuses on the separation of zinc and nickel ions in a diluted aqua regia solution. Liquid-liquid extraction by TBP, Cyanex 272 and Cyanex 301 was used and a distribution coefficient (D), a separation factor (S) and a relative purity (R) were induced to evaluate the degree of separation. All of the extractions were proportional to the concentration of the extractants, and zinc ions were extracted more easily than nickel ions. Among the extractants, Cyanex 301 showed the best characteristics regarding Zn/Ni separation. In particular, the extraction of zinc ions in the range of pH相似文献   

5.
The selective removal of zinc(II) over iron(II) by liquid–liquid extraction from spent hydrochloric acid pickling effluents produced by the zinc hot-dip galvanizing industry was studied at room temperature. Two distinct effluents were investigated: effluent 1 containing 70.2 g/L of Zn, 92.2 g/L of Fe and pH 0.6, and effluent 2 containing 33.9 g/L of Zn, 203.9 g/L of Fe and 2 M HCl. The following extractants were compared: TBP (tri-n-butyl phosphate), Cyanex 272 [bis(2,4,4-trimethylpentyl)phosphinic acid], Cyanex 301 [bis(2,4,4-trimethylpentyl) dithiophosphinic acid] and Cyanex 302 [bis(2,4,4-trimethylpentyl) monothiophosphinic acid]. The best separation results were obtained for extractants TBP and Cyanex 301. Around 92.5% of zinc and 11.2% of iron were extracted from effluent 1 in one single contact using 100% (v/v) of TBP. With Cyanex 301, around 80–95% of zinc and less than 10% of iron were extracted from effluent 2 at pH 0.3–1.0. For Cyanex 272, the highest extraction yield for zinc (70% of zinc with 20% of iron extraction) was found at pH 2.4. Cyanex 302 presented low metal extraction levels (below 10%) and slow phase disengagement characteristics. Reactions for the extraction of zinc with TBP and Cyanex 301 from hydrochloric acid solution were proposed.  相似文献   

6.
A substoichiometric radiochemical displacement technique has been employed for the quantification of trace amounts of copper from complex matrices. The procedure is based on higher stability of copper bipyridine complex compared to its cobalt analog, which leads to the displacement of spiked (60Co) cobalt from its bipyridine complex in n-butanol by Cu(II). The amount of labeled cobalt stripped back into the aqueous phase is proportional to the amount of copper incorporated into the organic phase and is monitored for the quantitative estimation of copper. The interferences from various allied ions were critically examined. The proposed method has been successfully employed for the estimation of copper from various certified alloys.  相似文献   

7.
Various low-cost adsorbents have been used for removing Cu(II) ions from aqueous solutions for the treatment of copper containing wastewaters to remove organic compounds and color. Sawdust is an impressive adsorbent in terms of adsorption efficiency, cost and availability; hence the use of sawdust as biosorbent has been widely studied. Many earlier investigations tried to correlate the experimental data with available models or some modified empirical equations, but these results were unable to predict the values of parameters from a single equation. Artificial neural networks (ANN) are effective in modeling and simulation of highly non-liner multivariable relationships. A well-designed and very well trained network can converge even on multiple number of variables at a time without any complex modeling and empirical calculations. In this present work ANN is applied for the prediction of percentage adsorption efficiency for the removal of Cu(II) ions from aqueous solutions by sawdust. Artificial neural network model, based on multilayered partial recurrent back-propagation algorithm has been used. The performance of the network for predicting the sorption efficiency of sawdust for copper is found to be very impressive.  相似文献   

8.
A separation-preconcentration procedure based on the coprecipitation of cobalt(II) and manganese(II) ions with copper(II)-8-hydroxquinoline system has been developed. The analytical parameters including pH, amount of copper(II) as carrier element, amount of 8-hydroxquinoline, sample volume, etc., was investigated for the quantitative recoveries of Co(II) and Mn(II). No interferic effects were observed from the concomitant ions which are present in real samples. The detection limits for analyte ions by three sigma criteria were 0.86microgL(-1) for cobalt and 0.98microgL(-1) for manganese. The validation of the presented preconcentration procedure was performed by the analysis of NIST SRM 2711 Montana soil and GBW 07605 Tea certified reference materials. The procedure presented was applied to the analyte contents of real samples including natural waters and some food samples with successfully analytical results.  相似文献   

9.
左丹英  朱宝库  王绍洪  徐又一 《功能材料》2006,37(1):150-154,159
研究了聚丙烯中空纤维膜接触萃取器中二(2-乙基已基)磷酸萃取金属铜离子的工艺条件以及溶剂夹带,分析了原料的pH值、两相流速、有机相初始铜离子浓度以及萃取膜面积对萃取效率的影响,结果表明,两相流速、萃取膜面积对萃取率基本无影响,而水溶液的pH值和有机相初始铜离子浓度的改变使萃取率在40%~99%之间变化.这主要是由于整个萃取过程的传质阻力主要来源于D2EHPA和Cu2 的界面配位络合反应阻力,当铜浓度比较高时,传质阻力或传质系数与铜浓度无关,其值基本不变;而当铜浓度降低时,传质阻力随着铜浓度的降低而增大,传质系数则随着铜浓度的降低而减小.  相似文献   

10.
A sensitive and simple method for the preconcentration of copper (II) ions has been reported. The method is based on the adsorption of copper ion N1, N2-bis(4-fluorobenzylidene)ethane-1,2-diamine loaded on Sepabeads. The sorpted copper content was eluted by 8 ml of 4 M nitric acid in acetone. The influences of the analytical parameters including pH and sample volume were investigated. The interference effects of matrix ions on the retentions of the copper (II) ions were also examined. The recovery of understudy analyte was generally higher than 95%. The method has been successfully applied to the evaluation of copper contents in some real samples including water samples, vegetable samples and milk samples.  相似文献   

11.
In this work, adsorption of Cu(II) ions on sawdust (SD) and activated sawdust (ASD) has been studied by using batch adsorption techniques. The equilibrium adsorption level was determined to be a function of the pH, initial Cu(II) concentration, and adsorbent dosage. The equilibrium nature of Cu(II) adsorption has been described by the Freundlich and Langmuir isotherms. The experimental adsorption data were fitted to the Langmuir adsorption model both sawdust and activated sawdust. The equilibrium capacity of sawdust and activated sawdust were 5.432 and 13.495 mg copper per g adsorbent, respectively at room temperature and natural pH. The maximum adsorption capacity was obtained at the maximum zeta potential value that -74.5 mV (pH 5) for activated sawdust and at -48.4 mV (pH 4) for sawdust. It was observed that activated sawdust was a suitable adsorbent than sawdust for removal of Cu(II) from aqueous solutions.  相似文献   

12.
A cloud point extraction procedure was presented for the preconcentration of copper(II) ion in various samples. After complexation by 4-(phenyl diazenyl) benzene-1,3-diamine (PDBDM) (chrysoidine), copper(II) ions were quantitatively recovered in Triton X-114 after centrifugation. 0.5 ml of methanol acidified with 1.0 mol L−1 HNO3 was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The influence of analytical parameters including ligand, Triton X-114 and HNO3 concentrations, bath temperature, heating time, centrifuge rate and time were optimized. The effect of the matrix ions on the recovery of copper(II) ions was investigated. The detection limit (3S.D.b/m, n = 10) of 0.6 ng mL−1 along with preconcentration factor of 30 and enrichment factor of 41.1 with R.S.D. of 1.0% for Cu was achieved. The proposed procedure was applied to the analysis of various environmental and biological samples.  相似文献   

13.
Separation and isolation of radioactive cobalt ((60)Co), one of the main contributors towards the activity build up in nuclear reactors, is essential for radioactive waste volume reduction during nuclear reactor decontamination procedures. In this context, sorption of free and complexed Co(II), Cu(II) and nitrilotriacetic acid (NTA) on the biosorbent, chitosan was studied. A detailed investigation on the role of pH on sorption of Co(II), Cu(II) and NTA was done. Uptake capacities of the metal ions and NTA were measured within pH range of 2.0-7.0. At pH above 5, the NTA uptake capacities were found to be higher in presence of the metal ions than in their absence. Effect of NTA was found to be more pronounced on copper uptake than on cobalt uptake. Significant change in selectivity of chitosan towards metal ion uptake from NTA medium was observed with respect to change in pH. At pH 2.9, the uptake of cobalt was found to be more than that of copper, while the selectivity was reversed at pH 6.0. The respective selectivity coefficient (k(Co/Cu)) values were found to be 2.06 and 0.072.  相似文献   

14.
The sorption conditions including pH of the aqueous solution, sample volume, etc., on Celtek clay of copper(II), cadmium(II), lead(II), chromium(III), nickel(II) and cobalt(II) ions from environmental samples has been studied. The effects of electrolytes as matrix on the preconcentration were also investigated with the recoveries >95%. The 3 sigma detection limits for copper, cadmium, lead, chromium, nickel and cobalt ions were found to be 0.25, 0.32, 0.73, 0.45, 0.50 and 0.41 microg/l, respectively. The relative standard deviation was <10% for the determination of analytes. The procedure was validated by analysis of a NRCC-SLRS 4 Riverine Water, SRM 1573a Tomato leaves and IAEA 336 Lichen standard reference materials. The developed method was successively utilized for the determination of Cu(II), Cd(II), Pb(II), Cr(III), Ni(II) and Co(II) in various samples including natural waters, wheat and human hair by flame atomic absorption spectrometry (FAAS) with satisfactorily results (recoveries>95% and R.S.D.'s<10%).  相似文献   

15.
Bis(5-bromo-2-hydroxybenzaldehyde)-1,2-propanediimine is synthesized by the reaction of 5-bromo-2-hydroxybenzaldehyde and 1,2-diaminopropane in ethanol. This ligand is used as a modifier of octadecyl silica disks for preconcentration of trace amounts of copper(II) ions, followed by nitric acid elution and flame atomic absorption spectrometric (FAAS) determination. The effect of parameters influencing the extraction efficiency, i.e. pH of the sample solutions, amount of the Schiff base, type and volume of stripping reagent, sample and eluent flow rates were evaluated. Under optimum experimental conditions, the capacity of the membrane disks modified by 4mg of the ligand was found to be 247.7 (+/-2.1)mug of copper. The detection limit and the concentration factor of the presented method are 2.4ng/l and greater than 400, respectively. The method was applied to the extraction, recovery and detection of copper in different synthetic and water samples.  相似文献   

16.
The preparation, characterization, and sorption properties for Cu(II) and Pb(II) of manganese oxide coated sand (MOCS) were investigated. A scanning electron microscope (SEM), X-ray diffraction spectrum (XRD) and BET analyses were used to observe the surface properties of the coated layer. An energy dispersive analysis of X-ray (EDAX) and X-ray photoelectron spectroscopy (XPS) were used for characterizing metal adsorption sites on the surface of MOCS. The quantity of manganese on MOCS was determined by means of acid digestion analysis. The adsorption experiments were carried out as a function of solution pH, adsorbent dose, ionic strength, contact time and temperature. Binding of Cu(II) and Pb(II) ions with MOCS was highly pH dependent with an increase in the extent of adsorption with the pH of the media investigated. After the Cu(II) and Pb(II) adsorption by MOCS, the pH in solution was decreased. Cu(II) and Pb(II) uptake were found to increase with the temperature. Further, the removal efficiency of Cu(II) and Pb(II) increased with increasing adsorbent dose and decreased with ionic strength. The pseudo-first-order kinetic model, pseudo-second-order kinetic model, intraparticle diffusion model and Elovich equation model were used to describe the kinetic data and the data constants were evaluated. The pseudo-second-order model was the best choice among all the kinetic models to describe the adsorption behavior of Cu(II) and Pb(II) onto MOCS, suggesting that the adsorption mechanism might be a chemisorption process. The activation energy of adsorption (E(a)) was determined as Cu(II) 4.98 kJ mol(-1) and Pb(II) 2.10 kJ mol(-1), respectively. The low value of E(a) shows that Cu(II) and Pb(II) adsorption process by MOCS may involve a non-activated chemical adsorption and a physical sorption.  相似文献   

17.
Copper ions surface-doped titanium dioxide nanotubes were prepared via an assembly process based on the reactions between Cu(NH2CH2CH2NH2)2(OH)2 and hydroxide radicals on the surface of TiO2 nanotubes, followed by the heat treatment in air at 723 K. The as-prepared samples were characterized with infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and fluorescence spectroscopy (FL). The photocatalytic activity of the copper ions surface-doped titanium dioxide nanotubes was investigated by photodegradation of Rhodamine B. The results showed that copper ions were successfully introduced onto the surface of TiO2 nanotubes. And two kinds of copper species of Cu(I) and Cu(II) were found on TiO2 surface. Copper ions act as electron trappers facilitating the separation of electrons and holes on the surface of TiO2 nanotubes, which allows more efficiency for the photodegradation of Rhodamine B.  相似文献   

18.
Cu(II)-EDTA (ethylendiaminetetraacetate) complexes are widely used in the manufacture of printed circuit boards. In order to avoid the outlet into the environment the sorption of complexes onto chitosan is proposed. The uptake of both Cu(II) and EDTA proceeds in weakly acidic (pH 3-5) and strongly alkaline (pH > 12) solutions. In acidic solutions EDTA sorption prevails. FT-IR investigations have shown that in acidic solutions the amide bonds between -COOH groups of EDTA and -NH2 groups of chitosan were formed. In alkaline solutions the single EDTA sorption does not proceed. In this media the sorption is enhanced by Cu(II) ions. The possible sorption mechanisms are discussed. The uptake of both Cu(II) and EDTA by chitosan depends on the ratio between them in solutions. EDTA sorption in acidic solutions increases with increase in its concentration while that of Cu(II) decreases. In alkaline solutions the sorption of both Cu(II) and EDTA increases with increase in Cu(II) concentration. The use of electrolysis enables to regenerate chitosan and to reuse it. During electrolysis copper is deposited onto the cathode and EDTA is oxidized onto the anode. The current efficiency depends on the current intensity, the load of chitosan and the pH of the background electrolyte. Electrolysis under the most favorable conditions ensures the 10-cycles regeneration without considerable changes in the sorption properties of chitosan. FT-IR spectra of the initial and regenerated chitosans are similar.  相似文献   

19.
The adsorption equilibrium of MOCS and the Cu(II) and Pb(II) ions removal capacity by MOCS in single-(non-competitive) and binary-(competitive) component sorption systems from aqueous solutions were investigated. The equilibrium data were analyzed using the Langmuir, Freundlich, Temkin and Redlich-Peterson isotherms. The characteristic parameters for each isotherm were determined. The Langmuir and Redlich-Peterson isotherms provided the best correlation for both Cu(II) and Pb(II) onto MOCS. From the Langmuir isotherms, maximum adsorption capacities of MOCS towards Cu(II) and Pb(II) are determined at different temperature. The maximum adsorption capacity of Cu(II) and Pb(II) per gram MOCS in single component sorption systems were from 5.91 and 7.71 micromol to 7.56 and 9.22 micromol for the temperature range of 288-318 K, respectively. The order of affinity based on a weight uptake by MOCS was as follows: Pb(II)>Cu(II). The same behavior was observed during competitive adsorption that is in the case of adsorption from their binary solution. The thermodynamic parameters (DeltaG degrees , DeltaH degrees , and DeltaS degrees) for Cu(II) and Pb(II) sorption on MOCS were also determined from the temperature dependence. This competitive adsorption showed that the uptake of each metal was considerably reduced with an increasing concentration of the other, the adsorption of Cu(II) being more strongly influenced by Pb(II) than vice versa due to the higher affinity of MOCS for the latter.  相似文献   

20.
Sorption capacity of oyster mushroom (Pleurotus platypus), button mushroom (Agaricus bisporus) and milky mushroom (Calocybe indica) were evaluated on biosorption of heavy metals, viz. cadmium (II) and lead (II) from aqueous solutions. The optimum sorption conditions were studied for each metal separately. The desired pH of the aqueous solution was found to be 6.0 for the removal of cadmium (II) and 5.0 for removal of lead (II) for all the mushrooms. The percent removal of both the metals was found to increase with the increase in biosorbent dosage and contact time. The fitness of the biosorption data for Langmuir and Freundlich adsorption models was investigated. It was found that biosorption of cadmium (II) and lead (II) ions onto the biomass of the three mushrooms were better suitable to Langmuir than Freundlich adsorption model. P. platypus showed the highest metal uptake potential for cadmium (qmax 34.96 mg/g) whereas A. bisporus exhibited maximum potential for lead (qmax 33.78 mg/g). Milky mushroom showed the lowest metal uptake capacity for both the metals. The present data confirms that mushrooms may be used as efficient biosorbent for the removal of cadmium (II) and lead (II) ions from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号