首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate precise three-dimensional integration of smooth bumps, grooves, and apertures in optically thick metal films using template stripping. Patterned silicon wafers are used as high-quality, reusable templates. The heights or depths of the metallic features are controlled to within 2 nm, giving continuously tunable optical properties with sharp and intense plasmonic resonances. Furthermore, we demonstrate a pick-and-place template stripping method in situ, enabling versatile three-dimensional micromanipulation, imaging, and characterization of nanoscale devices.  相似文献   

2.
Zinc oxide (ZnO) is an emerging material in large area electronic applications such as thin-film solar cells and transistors. We report on the fabrication and characterization of ZnO microstructures and nanostructures. The ZnO microstructures and nanostructures have been synthesized using sol-gel immerse technique on oxidized silicon substrates. Different precursor's concentrations ranging from 0.0001 M to 0.01 M (M=molarity) using zinc nitrate hexahydrate [Zn(NO3)2. 6H2O] and hexamethylenetetramine [C6H12N4] were employed in the synthesis of the ZnO structures. The surface morphologies were examined using scanning electron microscope (SEM) and atomic force microscope (AFM). In order to investigate the structural properties, the ZnO microstructures and nanostructures were measured using X-ray diffractometer (XRD). The optical properties of the ZnO structures were measured using photoluminescence (PL) and ultraviolet-visible (UV-Vis) spectroscopies.  相似文献   

3.
Potassium titanate (K2nTiO2, n = 4 or 6) nanostructures were prepared by a sol-gel method. The growth of potassium tetratitanate (K2Ti4O9) and potassium hexatitanate (K2Ti6O13) nanorods was obtainable in a range of Ti(OC2H5)4/CH3OK molar ratio from 1 to 2 and heating temperature from 800 °C to 950 °C with different morphologies and size distributions of the products. The role of pre-crystallized K2O phase on the growth behavior of K2nTiO2 (n = 4 or 6) nanostructures was demonstrated by structural and morphological observation.  相似文献   

4.
酞菁铁固态热裂解制备新型炭纳米材料   总被引:1,自引:1,他引:1  
研究了酞菁铁在密封体系中固态热裂解制备新型炭纳米材料的方法。通过这种方法,可以大量制备排列整齐又很直的碳纳米管。实验发现,升高热裂解温度,尤其温度高于800℃时,有利于碳管的生长。同时,这种方法还是一种非常有效的制备特殊结构纳米炭材料的方法。如用这种方法可以得到很长的具有电缆型结构的纳米炭,在其中具有单晶结构的炭化铁形成了电缆的金属芯。其他一些特殊炭结构,如项链型炭结构、管中管炭结构等也可以用这种方法制备出来。  相似文献   

5.
Monodispersed Fe nanospindles and nanoparticles were successfully synthesized through environmentfriendly reductive annealing ?-Fe OOH nanorods. Effects of annealing temperature and reaction atmosphere on microstructure, phase, and magnetic property of Fe nanostructures were investigated.The as-obtained pure Fe nanoparticles with mean size of 45 nm had a high saturation magnetization up to 207 emu/g, close to that of bulk material(218 emu/g), which exhibited high air stability. After exposing in air for 2 and 7 days, the as synthesized Fe nanoparticles still showed high magnetization of 182 and141 emu/g, respectively.  相似文献   

6.
Cu2S nanostructures prepared by Cu-cysteine precursor templated route   总被引:1,自引:0,他引:1  
Ling Jiang 《Materials Letters》2009,63(22):1935-1938
A facile Cu-cysteine precursor templated route for the synthesis of Cu2S nanowires, dendritic-like and flowerlike nanostructures is reported. The Cu-cysteine precursors are prepared through the reaction between Cu2+, l-cysteine and ethanolamine at room temperature, and the morphologies of Cu-cysteine precursors can be controlled by adjusting the molar ratio of l-cysteine to Cu2+. The Cu-cysteine precursors are used as both templates and source materials for the subsequent preparation of polycrystalline Cu2S nanostructures by thermal treatment, and the morphologies of the precursors can be well preserved after the thermal transformation to Cu2S nanostructures. The samples are characterized using X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy.  相似文献   

7.
《Materials Letters》2007,61(23-24):4610-4613
In this paper, we report hydrothermal synthesis of titania nanostructure with tunable phase and shape in the presence of methylcellulose (MC) and NaCl. As determined by X-ray diffraction, and scanning electron microscopy, nanosized flower-like rutile titania (nanorod aggregates) was obtained without the presence of MC. While MC was added, the assembled spheres of bicrystalline (brookite and rutile) titania nanoparticles was produced, and the bicrystalline titania with a brookite fraction in the range of 0–49.2% was prepared by changing the MC concentration. The mechanisms of bicrystalline phase formation were also briefly discussed.  相似文献   

8.
Aligned ZnO nanorods and nanotubes were grown on the silicon substrates by thermal evaporation of high pure zinc powders without any other metal catalyst. The morphology evolution of ZnO nanostructures with prolonged growth time suggested that the growth of the ZnO nanorods and nanotubes follows the vapor–liquid–solid mechanism. ZnO nanoneedle and nanoparticle films were also synthesized by the same way, and their photocatalytic performances were tested for the degradation of organic dye methylene blue. The ZnO nanoneedle films exhibited very high photocatalytic activities. The decomposition kinetics of the organic pollutant was discussed. Moreover, it is found that the ZnO nanoneedle films showed very stable photocatalytic activity.  相似文献   

9.
Tetrapod-like ZnO nanostructures were fabricated on ZnO-coated sapphire (001) substrates by two steps: pulsed laser deposition (PLD) and catalyst-free thermal evaporation process. First, the ZnO films were pre-deposited on sapphire (001) substrates by PLD. Then the ZnO nanostructures grew on ZnO-coated sapphire (001) substrate by the simple thermal evaporation of the metallic zinc powder at 900 °C in the air without any catalysts. The pre-deposited ZnO films by PLD on the substrates can provide growing sites for the ZnO nanostructures. The as-synthesized ZnO nanostructures were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectrum (FTIR). The results show that the tetrapod-like ZnO nanostructures are highly crystalline with the wurtzite hexagonal structure. Photoluminescence (PL) spectrum of as-synthesized nanostructures exhibits a UV emission peak at ~ 389 nm and a broad green emission peak at ~ 513 nm. In addition, the growth mechanism of ZnO nanostructures is also briefly discussed.  相似文献   

10.
《Materials Letters》2004,58(7-8):1223-1226
Nanostructures of narrow band-gap semiconductiors such as PbS provide a large scope for band-gap engineering as strong quantum confinement effects can alter the bulk band-gap value all the way from 0.41 to 2.3 eV, rendering the material transparent in most of the visible range of the electromagnetic spectrum. This paper discusses the preparation and characterization of polymer-based PbS nanostructures showing large characteristic blue shift in optical absorption. Enhancement in electrical resistivity is observed as a result of quantum confinement. This material is found to exhibit strong thermal lens effects, which is utilized to achieve optical limiting at low laser power levels.  相似文献   

11.
ZnO nanostructures were prepared on Si(100) substrates using a vapour transport technique in water vapour and oxygen gas, in the existence of Au catalyst. Synthesised in both water vapour and oxygen gas, the ZnO nanostructures presented hexagonal wurtzite structure but exhibited different growth orientations, which subsequently created diverse nanostructures. The different ZnO morphologies grown in different atmosphere are due to various growth mechanisms, which have been proposed in this article. At the end, the photoluminescence spectra of both ZnO nanostructures were measured, which revealed only a strong ultraviolet peak at about 389 nm.  相似文献   

12.
Columnar CeO2 nanostructures are grown on alumina substrates by a template- and catalyst-free Chemical Vapor Deposition (CVD) approach and subsequently tested as resistive gas sensors of CH3COCH3, H2, NO2. The sensor response is stable and reproducible throughout the whole working temperature range (200-500 degrees C) and directly dependent on the analyte gas and the adopted operating conditions. The higher sensitivity with respect to that displayed by continuous CeO2 thin films demonstrates the potential of fabricating nanostructured sensing devices characterized by improved functional performances.  相似文献   

13.
The fast growth of large single-crystalline graphene by chemical vapor deposition on Cu foil remains a challenge for industrial-scale applications.To achieve the fast growth of large single-crystalline graphene,understanding the detailed dynamics governing the entire growth process—including nucleation,growth,and coalescence—is important;however,these remain unexplored.In this study,by using a pulsed carbon isotope labeling technique in conjunction with micro-Raman spectroscopy identification,we visualized the growth dynamics,such as nucleation,growth,and coalescence,during the fast growth of large singlecrystalline graphene domains.By tuning the supply of the carbon source,a growth rate of 320 μm/min and the growth of centimeter-sized graphene single crystals were achieved on Cu foil.  相似文献   

14.
Growth of uniform and vertically well aligned nanorods is a difficult process and becomes more complicated in case of ZnO nanorods on silicon (Si) substrate due to thermal instability of the Si substrate and large lattice mismatch (~?40%) between the substrate and the ZnO nanorods array. Growth of ZnO nanorods assisted by metal ion via rf-sputtering is a good technique; however, it needs many parameters to be controlled for desired growth and morphology of nanostructures. In this work, we report the morphological transformations of ZnO nanostructured thin film by simply controlling the concentration of Cobalt (Co) impurity in sputtering target. With the introduction of Co ions in ZnO matrix, the initial coalescence grain structure (pyramidal morphology) changes into columnar grains and as the concentration of Co ions increases further, a highly oriented ZnO nanorods array is obtained. The possible mechanism with the help of schematic diagram is also proposed for the morphological transformation of ZnO nanostructures. The vertically aligned nanorods show good optical properties as well as robust ferromagnetism at room temperatures. It has also been observed that with the dopant conc. increasing there was a significant decrease in the band gap energy. The structure and morphology of rf-sputtered nanostructured thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and selected area electron diffraction. Interestingly, with Co conc. increasing in ZnO matrix results in decreasing LO modes in Raman spectroscopy. It can have strong influence on the magnetic properties of the material. The good optical and strong ferromagnetic properties of the ZnO nanorods, suggest its possible applications in the fields of lasers, spintronics and medical applications.  相似文献   

15.
Copper oxide films were prepared by RF reactive magnetron sputtering at different percentages of oxygen pressure in a Ar:O2 reactive gas mixture at room temperature. The structural and optical properties of CuO films were investigated by a field emission scanning electron microscope, Raman spectroscopy, X-ray diffraction and UV–Visible spectrophotometer. The structure of the deposited film changed from a mixture of Cu2O + CuO phases to a pure CuO phase with an increase in oxygen percentage. In addition the crystallite size increased from 12 to 24 nm as the oxygen pressure percentage increased. The optical transmittance significantly increased with the increase of the oxygen pressure percentage and the optical band gap of the film increased from 1.33 to 1.41 eV. The film prepared with 30 and 40 % oxygen pressure showed (002) crystallographic orientation. The I–V characteristic of p-CuO/n-Si heterojunction diode was also found to be dependent on the oxygen pressure percentage.  相似文献   

16.
The carbon nanocoils with various kinds of conformations were prepared by the catalytic pyrolysis of acetylene using the Ni metal catalyst supported on molecular Sieves which was prepared using Fe-containing kaolin as the raw material. There are four kinds of carbon nanocoils conformations produced by this catalyst. The influences of reaction temperature and gas conditions on the conformations of the nanocoils were investigated and the reasons of forming nano-size coils were discussed by comparison with pure Ni metal catalyst.  相似文献   

17.
Chen R  Zou C  Bian J  Sandhu A  Gao W 《Nanotechnology》2011,22(10):105706
Silver-doped zinc oxide (Ag:ZnO) nanostructures were prepared by a facile and efficient wet oxidation method. This method included two steps: metallic Zn thin films mixed with Ag atoms were prepared by magnetron sputtering as the precursors, and then the precursors were oxidized in an O(2) atmosphere with water vapour present to form Ag:ZnO nanostructures. By controlling the oxidation conditions, pure ZnO and Ag:ZnO nanobelts/nanowires with a thickness of ~ 20 nm and length of up to several tens of microns were synthesized. Scanning electron microscopy, transmission electron microscopy, cathodoluminescence and low temperature photoluminescence (PL) measurements were adopted to characterize the microstructure and optical properties of the prepared samples. The results indicated that Ag doping during magnetron sputtering was a feasible method to tune the optical properties of ZnO nanostructures. For the Ag:ZnO nanostructures, the intensity of ultraviolet emission was increased up to three times compared with the pure ones. The detailed PL intensity variation with the increasing temperature is also discussed based on the ionization energy of acceptor in ZnO induced by Ag dopants.  相似文献   

18.
Nanostructures of tungsten trioxide (WO3) have been successfully synthesized by using an aged route at low temperature (60 °C) followed by a hydrothermal method at 200 °C for 48 h under well controlled conditions. The material was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Specific Surface Area (SBET) were measured by using the BET method. The lengths of the WO3 nanostructures obtained are between 30 and 200 nm and their diameters are from 20 to 70 nm. The growth direction of the tungsten oxide nanostructures was determined along [010] axis with an inter-planar distance of 0.38 nm.  相似文献   

19.
This paper is a short review about the principle, preparation, and applications of ultra-thin oxide films prepared by molecular layer deposition (MLD). Porous oxide films, with well-defined porous structures and precisely controlled thicknesses down to several angstroms, can be prepared from dense organic/inorganic hybrid polymer films grown by MLD. The organic constituents in the film can be removed either by calcination at elevated temperatures or mild water etching at room temperature. Because of the layer-by-layer growth process for MLD, the deposited polymer films have regular structures and the removal of organic components from MLD polymer films produces uniform interconnected highly porous structures with a high surface area. For example, porous aluminum oxide films prepared by such a method have both micropores and mesopores with a BET surface area as high as 1250 m2/g. Examples of the versatility of the technique for fabrication of novel functional materials for various applications are discussed, including thermally stable, highly selective metal nanoparticle catalysts, defect-free inorganic membranes for gas separation, and photocatalytic layers prepared from titanium alkoxide MLD films.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号