首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen-doped carbon nanotube (CNT) films have been synthesized by simple microwave plasma enhanced chemical vapor deposition technique. The morphology and structures were investigated by scanning electron microscopy and high resolution transmission electron microscopy. Morphology of the films was found to be greatly affected by the nature of the substrates. Vertically aligned CNTs were observed on mirror polished Si substrates. On the other hand, randomly oriented flower like morphology of CNTs was found on mechanically polished ones. All the CNTs were found to have bamboo structure with very sharp tips. These films showed very good field emission characteristics with threshold field in the range of 2.65-3.55 V/μm. CNT film with flower like morphology showed lower threshold field as compared to vertically aligned structures. Open graphite edges on the side surface of the bamboo-shaped CNT are suggested to enhance the field emission characteristics which may act as additional emission sites.  相似文献   

2.
Single-walled carbon nanotubes (CNTs) and multi-walled CNTs of length 2-5 mm were grown from Fe/Mo nanoparticles and Fe thin film catalyst, respectively, by thermal chemical vapor deposition. Following CNT growth, the CNTs were in-situ coated with nanocrystalline carbon shells of thickness 100-1500 nm. Horizontally oriented CNTs with carbon shells in the direction of the feeding gas were visible under a regular optical microscope. They were easily manipulated by optical manipulators, and CNT probes can thus be fabricated.  相似文献   

3.
Carbon nanotubes (CNTs) were synthesized by low-pressure chemical vapour deposition (LPCVD) using N2:C2H2:H2 gas mixtures on nanocrystalline Ni95Ti5 film. This nanocrystalline film was deposited on silicon substrate using vapour condensation method. The growth temperature and growth time was kept at 800 degrees C and 30 mins, respectively and the pressure was maintained at 10 Torr. The growth mechanism of CNTs was investigated using FESEM, TEM, HRTEM, and Raman Spectroscopy. From FESEM image of Ni95Ti5 nanocrystalline film, it is clear that the particle size varies from 5-10 nm. EDX analysis suggests that Ni95Ti5 alloy contains Ni and Ti both. It is clear from TEM images that CNTs are multiwalled with the diameter varying from 10-30 nm and length of several micrometers. HRTEM image shows that the structure of these multi-walled nanotube (MWNTs) is bamboo-shaped and the catalyst exists at the tip of MWNTs. Fourier Transform Raman Spectroscopy confirmed that graphitic structure of as-prepared CNTs. Field emission measurements reveal that the carbon nanotubes grown for 30 mins showed a turn-on field of 7.2 V/microm, when the current density achieves 10 microA/cm2. The field enhancement factor was calculated to be 708.50 for carbon nanotubes grown for 30 mins.  相似文献   

4.
Nitrogen-doped carbon nanotube (N-doped CNT) arrays have been synthesized on graphene substrate by chemical vapor deposition process, in which iron nanoparticles (NPs) assembled on the graphene sheet were generated in situ from the reduction of Fe3O4 NPs/reduced graphene oxide (RGO) and were used as catalyst. The morphology and structure of the N-doped CNT arrays were investigated by field emission scanning electron microscope and high-resolution transmission electron microscope. The N-doped CNTs were bamboo-shaped and the density can be controlled by modulating the density of catalyst NPs on RGO sheets. The concentration and incorporation of nitrogen were studied by elemental analysis, X-ray photoelectron spectroscope and Raman analysis, and the results showed that the nitrogen content was around 3 wt.%. Because of the good conductivity of graphene structure, N-doped CNT arrays grown on graphene substrate may be promising candidates as noble metal-free electrodes for oxygen reduction reaction in the future.  相似文献   

5.
Huan-Bin Lian  Kuei-Yi Lee 《Vacuum》2009,84(5):534-536
Zinc oxide (ZnO) nanostructures were grown on vertically aligned carbon nanotubes (CNTs) using thermal chemical vapor deposition (CVD) to enhance the field emission characteristics. The shape of ZnO nanostructure was tapered. Scanning electron microscopy (SEM) image showed the ZnO nanostructures were grown onto CNT surface uniformly. The field electron emission of pristine CNTs and ZnO-coated CNTs were measured. The results showed that ZnO nanostructures grown onto CNTs could improve the field emission characteristics. The ZnO-coated CNTs had a threshold electric field at about 3.1 V/μm at 1.0 mA/cm2. The results demonstrated that the ZnO-coated CNT is an ideal field emitter candidate material. The stability of the field emission current was also tested.  相似文献   

6.
The optimal carbon nanotube (CNT) bundles with a hexagonal arrangement were synthesized using thermal chemical vapor deposition (TCVD). To enhance the electron field emission characteristics of the pristine CNTs, the zinc oxide (ZnO) nanostructures coated on CNT bundles using another TCVD technique. Transmission electron microscopy (TEM) images showed that the ZnO nanostructures were grown onto the CNT surface uniformly, and the surface morphology of ZnO nanostructures varied with the distance between the CNT bundle and the zinc acetate. The results of field emissions showed that the ZnO nanostructures grown onto the CNTs could improve the electron field emission characteristics. The enhancement of field emission characteristics was attributed to the increase of emission sites formed by the nanostructures of ZnO grown onto the CNT surface, and each ZnO nanostructure could be regarded as an individual field emission site. In addition, ZnO-coated CNT bundles exhibited a good emission uniformity and stable current density. These results demonstrated that ZnO-coated CNTs is a promising field emitter material.  相似文献   

7.
Block copolymer thin films fabricated from polystyrene-polyferrocenylsilane (PS-b-PFS) block copolymers on silicon substrates were used as precursors of well-ordered, nanosized growth catalysts for carbon nanotubes (CNTs). The size of the catalytic domains was tuned by changing the molecular weight of the block copolymer, enabling control of the diameter of the CNTs grown from these substrates. CNT growth on catalytic substrates with larger organometallic domain sizes, using acetylene as a carbon source, resulted in enhanced amounts of CNT deposition compared to smaller PFS domains, which exhibited low catalytic activity. The inner and outer diameters of the multi-walled CNTs obtained were typically 8 and 16 nm, respectively, and were not influenced by the catalytic domain sizes. Various annealing strategies in inert or in hydrogen atmosphere were investigated. The use acetylene with an additional hydrogen flow as gas feed resulted in a significant increase in deposition on all PS-b-PFS decorated substrates. Under these conditions, the CNT diameters could be controlled by the catalyst domain sizes, resulting in decreasing diameters with decreasing domain sizes. Multiwalled CNTs with inner and outer diameters of 4 and 7 nm, respectively, and a narrow diameter distribution were obtained.  相似文献   

8.
定向碳纳米管阵列在石英玻璃基底上的模板化生长研究   总被引:5,自引:0,他引:5  
分别以带有刻痕的石英玻璃和溅射过Au膜的石英玻璃为生长基底,通过催化裂解二茂铁和二甲苯混合物的方法,在基底上制备出了模板化的定向碳纳米管(CNT)阵列,扫描电镜(SEM)和透射电镜(TEM)观察表明:在这两种基底上生长的定向碳纳米管阵列的模板化程度都很高,其中的碳纳米管多为直径在20~50nm的多壁管(MWNT),且具有很好的定向性。本文还分析、对比了基底材料对定向碳纳米管生长的影响,初步探讨了定向碳纳米管模板化生长的形成机制。  相似文献   

9.
《Materials Letters》2005,59(29-30):4044-4047
Carbon nanotubes (CNTs) were prepared by the catalytic decomposition of methane at 680 °C for 120 min, using nickel oxide–silica binary aerogels as the catalyst. The morphological structure of CNTs was investigated by transmission electron microscopy (TEM), X-ray Diffraction (XRD) and Raman spectroscopy. The results revealed that CNTs with diameter 40–60 nm showed high quality, uniform diameter and high length/diameter ratio, the wall structure of CNTs was similar with that of highly oriented pyrolytic graphite (HOPG), and some metal catalyst particles were encapsulated at the tip of CNTs. Different methods were compared to modify CNTs. Investigated by TEM, XRD, Raman spectroscopy and nitrogen adsorption/desorption for modified CNTs, it was confirmed that after modification treatment by immersion in diluted HNO3 solution with ultrasonic and then milling by ball at a high velocity, the metal catalyst particles at the tip of CNTs disappeared, the unique cylinder wall structure remained, the CNT length became short, the cap at the tip of nanotube was opened, and thus the internal surface area could be effectively used, leading to the increase of the specific surface area and pore volume. This technique is relatively simple and effective for modifying CNTs which can be scaled up for industrial applications.  相似文献   

10.
Vertically aligned carbon-nanotube (CNT) arrays were fabricated in the thin-film anodic aluminum oxide (AAO) templates on silicon wafers utilizing a niobium (Nb) thin film as the source electrode. The average diameter of the CNTs was 25 nm, and the number density was 3 x 10(10) cm(-2). The CNT arrays synthesized at 700 degrees C and above exhibited Schottky behavior even at 300 K, with energy gaps between 0.2 eV and 0.3 eV. However, individual CNTs obtained by removal of the template behaved as resistors at 300 K. The CNT/Nb oxide/Nb junction is thought to be responsible for the Schottky behavior. This structure can be a useful cornerstone in the fabrication of nanotransistors operating at room temperature.  相似文献   

11.
Metal oxides are well-known potential alternatives to graphite as anode materials of lithium-ion batteries, and they can deliver much higher reversible capacities than graphite even at high current densities. In this study, hexagonal disk-shaped ZnO are synthesized by a facile solution reaction of ZnCl2 and its composite is prepared in the presence of carbon nanotubes (CNTs). The as prepared ZnO/CNT composite has been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, fourier transform-infrared spectroscopy and Rutherford backscattering spectroscopy. Electrochemical characterization by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic discharge/charge tests demonstrate that the conversion reactions in ZnO and ZnO/CNT electrodes enable reversible capacity of 478 and 602 mAh g?1, respectively for up to 50 cycles. Our investigation highlights the importance of anchoring of small ZnO particles on CNTs for maximum utilization of electrochemically active ZnO and CNTs for energy storage application in lithium-ion batteries.  相似文献   

12.
Carbon nanotubes (CNT) have a unique structure and feature. In the present study, cell proliferation was performed on the scaffolds of single-walled CNTs (SWCNT), multiwalled CNTs (MWCNT), and on graphite, one of the representative isomorphs of pure carbon, for the sake of comparison. Scanning electron microscopy observation of the growth of osteoblast-like cells (Saos2) cultured on CNTs showed the morphology fully developed for the whole direction, which is different from that extended to one direction on the usual scaffold. Numerous filopodia were grown from cell edge, extended far long and combined with the CNT meshwork. CNTs showed the affinity for collagen and proteins. Proliferated cell numbers are largest on SWCNTs, followed by MWCNTs, and are very low on graphite. This is in good agreement with the sequence in the results of the adsorbed amount of proteins and expression of alkaline phosphatase activity for these scaffolds. The adsorption of proteins would be one of the most influential factors to make a contrast difference in cell attachment and proliferation between graphite and CNTs, both of which are isomorphs of carbon and composed of similar graphene sheet crystal structure. In addition, the nanosize meshwork structure with large porosity is another property responsible for the excellent cell adhesion and growth on CNTs. CNTs could be the favorable materials for biomedical applications.  相似文献   

13.
Wu WT  Chen KH  Hsu CM 《Nanotechnology》2006,17(18):4542-4547
This paper demonstrates that carbon nanotubes (CNTs) can be synthesized on a cobalt coated silicon substrate using electron cyclotron chemical vapour deposition and without intentionally heating the substrate. With the mixed gases of C(3)H(8)/N(2), CNTs with a multi-walled structure and a diameter up to 70?nm have been observed. Results show that the diameter of the CNTs increases with the thickness of the cobalt catalyst film and the amount of nitrogen incorporated in the CNT films considerably influences the structures of the CNTs. Vertically aligned CNTs can be fabricated with a microwave power as low as 300?W and the flow rate ratio of C(3)H(8)/N(2) = 20/20?sccm. The CNTs exhibit a turn-on field of 0.2?V?μm(-1) determined at the emission current density of 10?μA?cm(-2).  相似文献   

14.
This paper presents direct growth of horizontally-aligned carbon nanotubes (CNTs) between two predefined various inter-spacing up to tens of microns of electrodes (pads) and its use as CNT field-effect transistors (CNT-FETs). Using the conventional photolithography technique followed by thin film evaporation and lift off, the catalytic electrodes (pads) were prepared, consisting of Pt, Al and Fe triple layers on SiO2/Si substrate. The grown CNTs were horizontally-aligned across the catalytic electrodes on the modified gold image furnace hot stage (thermal CVD) at 800 degrees C by using an alcohol vapor as the carbon source. Scanning and transmission electron microcopies (SEM/TEM) were used to observe the structure, growth direction and density of CNTs, while Raman spectrum analysis was used to indicate the degree of amorphous impurity and diameter of CNTs. Both single- and multi-wall CNTs with diameters of 1.1-2.2 nm were obtained and the CNT density was controlled by thickness of Fe catalytic layer. Following horizontally-aligned growth of CNTs, the electrical properties of back-gate CNT-FETs were measured and showd p-type conduction behaviors of FET.  相似文献   

15.
This paper describes the fabrication and characterization of a hybrid nanostructure comprised of carbon nanotubes (CNTs) grown on graphene layers for supercapacitor applications. The entire nanostructure (CNTs and graphene) was fabricated via atmospheric pressure chemical vapor deposition (APCVD) and designed to minimize self-aggregation of the graphene and CNTs. Growth parameters of the CNTs were optimized by adjusting the gas flow rates of hydrogen and methane to control the simultaneous, competing reactions of carbon formation toward CNT growth and hydrogenation which suppresses CNT growth via hydrogen etching of carbon. Characterization of the supercapacitor performance of the CNT-graphene hybrid nanostructure indicated that the average measured capacitance of a fabricated graphene-CNT structure was 653.7 μF cm(-2) at 10 mV s(-1) with a standard rectangular cyclic voltammetry curve. Rapid charging-discharging characteristics (mV s(-1)) were exhibited with a capacitance of approximately 75% (490.3 μF cm(-2)). These experimental results indicate that this CNT-graphene structure has the potential towards three-dimensional (3D) graphene-CNT multi-stack structures for high-performance supercapacitors.  相似文献   

16.
The macroscopic coaxial carbon cylinders (dia. approximately 0.5 cm with varying lengths approximately 2-5 cm) consisting of aligned carbon nanotube (CNT) stacks have been prepared by spray pyrolysis of benzene-ferrocene solution in argon atmosphere at approximately 850 degrees C-900 degrees C temperature. The coaxial carbon cylinders of CNT stacks have been formed directly inside the quartz tube. We attempted to prepare superimposed multi carbon cylinder configurations, each consisting of ordered and aligned CNTs stacked over each other. For this, we have terminated the spray of precursor after run of about 25 minutes, for a short interval (approximately 5 min), and then the solution was sprayed again over the already deposited hot CNT stack. Gross structural characterization of CNTs was done through X-ray diffraction technique (XRD). Microstructural characterizations of as prepared coaxial carbon cylinders with CNT stacks were done by scanning electron microscopic (SEM) techniques. SEM studies show that the CNTs are well aligned along the periphery of the cross section of coaxial carbon cylinder, each consisting of CNTs of the type described in the above. Comparisons have been made between the present macroscopic coaxial carbon cylinders with CNT stacks studied earlier by several other workers. Plausible explanation for the synthesis of CNT stacks will be put forward.  相似文献   

17.
The effect of cobalt (Co) and nickel (Ni) nanoparticle catalysts on the growth of carbon nanotubes (CNTs) were studied, where the CNTs were vertically grown by plasma enhanced chemical vapour deposition (PECVD) method. The growth conditions were fixed at a temperature of 700 °C with a pressure of 1000 mTorr for 40 minutes with various thicknesses of sputtered metal catalysts. Only multi-walled carbon nanotubes are present from the growth as large average diameter of outer tube (~10–30 nm) were measured for both of the catalysts used. Experimental results show that high density of CNTs was observed especially towards thicker catalysts layers where larger and thicker nanotubes were formed. The nucleation of the catalyst with various thicknesses was also studied as the absorption of the carbon feedstock is dependent on the initial size of the catalyst island. The average diameter of particle size increases from 4 to 10 nm for Co and Ni catalysts. A linear relationship is shown between the nanoparticle size and the diameter of tubes with catalyst thicknesses for both catalysts. The average growth rate of Co catalyst is about 1.5 times higher than Ni catalyst, which indicates that Co catalyst has a better role in growing CNTs with thinner catalyst layer. It is found that Co yields higher growth rate, bigger diameter of nanotube and thicker wall as compared to Ni catalyst. However, variation in Co and Ni catalysts thicknesses did not influence the quality of CNTs grown, as only minor variation in IG/ID ratio from Raman spectra analysis. The study reveals that the catalysts thickness strongly affects not only nanotube diameter and growth rate but also morphology of the nanoparticles formed during the process without influencing the quality of CNTs.  相似文献   

18.
We demonstrated that the diameter and the density of carbon nanotubes (CNTs) which had a close relation to electric-field-screening effect could be easily changed by the control of catalytic Ni thickness combined with NH3 plasma pretreatment. Since the diameter and the density of CNTs had a tremendous impact on the field-emission characteristics, optimized thickness of catalyst and application of plasma pretreatment greatly improved the emission efficiency of CNTs. In the field emission test using diode-type configuration, well-dispersed thinner CNTs exhibited lower turn-on voltage and higher field enhancement factor than the densely-packed CNTs. A CNT film grown using a plasma-pretreated 25 angstroms-thick Ni catalyst showed excellent field emission characteristics with a very low turn-on field of 1.1 V/microm @ 10 microA/cm2 and a high emission current density of 1.9 mA/cm2 @ 4.0 V/microm, respectively.  相似文献   

19.
We studied the selective formation of Co catalyst particles as a function of indentation pressure. We subjected a Co (8 nm thickness)/Si substrate pre-annealed at 600 °C to indentation processing. The catalytic function was confirmed in the indentations by the selective growth of carbon nanotubes (CNTs) at 800 °C. The number density of CNTs against the indentation pressure was investigated against indentation loads for two types of indenter: a Berkovich indenter with a ridge angle of 115° and a Berkovich indenter with a ridge angle of 90°. The pressures above 7 GPa applied by the former indenter enhanced Co atomization acting as a catalyst function for CNT growth (35 CNTs in one indentation). In contrast to this, the number of CNTs was markedly reduced when the latter indenter was used with pressures less than 3 GPa. The pop-out phenomenon was observed in unloading curves at pressures above 7 GPa. These results indicate that metastable Si promotes the self-aggregation of catalyst particles (Co) leading to the selective growth of CNTs within indentations at pressures above 7 GPa.  相似文献   

20.
J.M. Ting  K.H. Liao  T.L. Chou 《Thin solid films》2007,515(12):5123-5130
Carbon nanotube (CNT) and one-dimensional ZnO are two of the most important nano materials for which continuous efforts are being made for the development of novel processes. In this paper we present new approaches for the growth of CNTs and ZnO nanorods. Through the selection of an appropriate catalyst, namely, Fe-Si thin film, aligned CNT can be obtained at a temperature as low as 370 °C using a conventional microwave plasma-enhanced chemical vapor deposition (MPCVD) technique. This is attributed to the fact that the addition of Si greatly enhances the carbon diffusion such that a fast reaction-controlled growth is obtained. Also, with the use of a decisive electroless copper layer deposited on Si or glass substrate, semi-aligned ZnO nanorods can be obtained at the room temperature. It was found that the residual stress in the electroless copper is the key to the formation of ZnO nanorods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号