首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 755 毫秒
1.
Carbon-doped silicon oxide (SiOCH) low dielectric constant (low-k) material is a good candidate for advanced interconnect technology. Good thermal stability of the dielectric is required due to the many thermal processes involved during IC fabrication. The thermal stability of tetramethylcyclotetrasiloxane (TMCTS) based plasma-enhanced chemical vapor deposition (PECVD) carbon doped low-k material with annealing temperature from 400 to 800 degrees C in N2 was studied. The thermal stability temperature of TMCTS based carbon doped low-k material is 600 degrees C. Above 600 degrees C annealing, the thermal energy can break Si-CH3, Si-C, Si-H, and C-H bonds leading to outgasing, which results in film composition change, weight loss, and thickness shrinkage. Film composition changes, especially carbon loss and oxygen incorporation, can degrade its reliability extremely. Carbon is desorbed in the form of CH4, CO, and other hydrocarbon.  相似文献   

2.
Jeon SY  Seong NJ  Ahn JK  Lee HW  Yoon SG 《Nanotechnology》2008,19(43):435305
Metal-organic chemical vapor deposition (MOCVD) at near room temperature would not only enable integration of oxide films on polymers but would provide the capability of conformal coating of high-aspect ratio features required for fabrication of many micro-and nanoelectronic devices. The concept of near room temperature MOCVD (nanocluster deposition: NCD) consists of the production of a single phase with nanosized crystalline nuclei by a chemical vapor reaction at the showerhead maintained above the decomposition temperature of the precursors and consequently deposition of the nanosized crystalline films on unheated substrates. Deposition of the nanosized crystalline nuclei on unheated substrates was performed by controlling both the showerhead temperature and the working pressure. The Bi(3)NbO(7) (BNO) films deposited without substrate heating (real temperature of substrate surface: 50?°C) exhibit a crystalline single phase with smooth and dense morphologies, a dielectric constant of 30, a leakage current density of ~10(-6)?A?cm(-2) at 0.3?MV?cm(-1) and a step coverage of approximately 93% for films deposited at 100?°C on high-aspect ratio features. An NCD provides a new platform for near room temperature deposition of oxide thin films, opening the way for film deposition on polymer substrates to enable a flexible electronic device technology.  相似文献   

3.
The chemical, structural, mechanical and optical properties of thin aluminum oxide films deposited at room temperature (RT) and 800 °C on (100) Si and Si-SiO2 substrates by pulsed laser deposition and plasma enhanced chemical vapor deposition are investigated and compared. All films are smooth and near stoichiometric aluminum oxide. RT films are amorphous, whereas γ type nano-crystallized structures are pointed out for films deposited at 800 °C. A dielectric constant of ∼ 9 is obtained for films deposited at room temperature and 11-13 for films deposited at 800 °C. Young modulus and hardness are in the range 116-254 GPa and 6.4-28.8 GPa respectively. In both cases, the results show that the deposited films have very interesting properties opening applications in mechanical, dielectric and optical fields.  相似文献   

4.
Nano-polycrystalline vanadium oxide thin films have been successfully produced by pulsed laser deposition on Si(100) substrates using a pure vanadium target in an oxygen atmosphere. The vanadium oxide thin film is amorphous when deposited at relatively low substrate temperature (500 degrees C) and enhancing substrate temperature (600-800 degrees C) appears to be efficient in crystallizing VOx thin films. Nano-polycrystalline V3O7 thin film has been achieved when deposited at oxygen pressure of 8 Pa and substrate temperature of 600 degrees C. Nano-polycrystalline VO2 thin films with a preferred (011) orientation have been obtained when deposited at oxygen pressure of 0.8 Pa and substrate temperatures of 600-800 degrees C. The vanadium oxide thin films deposited at high oxygen pressure (8 Pa) reveal a mix-valence of V5+ and V4+, while the VOx thin films deposited at low oxygen pressure (0.8 Pa) display a valence of V4+. The nano-polycrystalline vanadium oxide thin films prepared by pulsed laser deposition have smooth surface with high qualities of mean crystallite size ranging from 30 to 230 nm and Ra ranging from 1.5 to 22.2 nm. Relative low substrate temperature and oxygen pressure are benifit to aquire nano-polycrystalline VOx thin films with small grain size and low surface roughness.  相似文献   

5.
In this study, the permeability of passivation layers consisting of aluminum oxide (Al2O3) and titanium oxide (TiO2) was examined. The films were deposited on poly(ether sulfone) (PES) substrates via electron cyclotron resonance atomic layer deposition (ECR-ALD) at various deposition temperatures. The optimum plasma power and deposition temperature were investigated through measurements of the refractive index and packing density of the Al2O3 and TiO2 films. A buffer layer/multilayer structure was proposed in this study to improve the passivation barrier performance. A low water vapor transmission rate (WVTR) of approximately 5 x 10(-3) g/m2 x day was achieved with two Al2O3/TiO2 stacks with thicknesses of 40 nm deposited at 80 degrees C. Based on the Arrhenius rate equation, the activation energy of water vapor transmission through different passivation structures was examined. The activation energies of Al2O3, Al2O3/TiO2, and two Al2O3/TiO2 stacks with thicknesses of 40 nm were 51.8, 63.9, and 74.7 kJ/mol, respectively.  相似文献   

6.
交替频率PECVD方法沉积低应力氮化硅薄膜及其性质研究   总被引:4,自引:1,他引:3  
用PECVD方法制备氮化硅薄膜,研究了射频频率对氮化硅薄膜的沉积和性质的影响。结果表明,在低频下(100KHz)制备的氮化硅薄膜密度较大,具有8x109Pa左右的压应力和较小的刻蚀速率;而高频(13.56MHz)沉积的氮化硅薄膜密度较小,具体约2x109Pa的张应力,刻蚀速率较大。红外光谱表明,薄膜性质同薄膜中的氢原子成键情况有关。实验中利用高、低频交替沉积的方法,成功地制备了低应力(107Pa)氮化硅薄膜。当加热到500C时,应力较大的氮化硅薄膜会发生开裂(张应力)或拱起(压应力)。低应力的氮化硅薄膜能够承受700C的温度,温度更高时,薄膜的完整性因氢溢出而破坏。  相似文献   

7.
This paper describes the direct deposition of hydrocarbon coatings with a static water contact angle higher than 150 using simple C6 hydrocarbons as a reactive gas in helium plasma generated in ambient air without any preroughening of the silicon (100) substrate. The film morphology and hydrophobicity are found to strongly depend on the structure of the reagent hydrocarbon. The films deposited with n-hexane and cyclohexane exhibited relatively smooth morphology and the water contact angle was only ~95°, similar to polypropylene. When benzene was used as a main reactive gas, the deposited film surface showed nanoscale textured morphology and superhydrophobicity with a water contact angle as high as 167°. Because the plasma is generated in air, all films show some degree of oxygen incorporation. These results imply that the incorporation of a small amount of oxygenated species in hydrocarbon films due to excitation of ambient air is not detrimental for superhydrophobicity, which allows the atmospheric rf plasma with the benzene precursor to produce rough surface topography needed for superhydrophobicity.  相似文献   

8.
The hydrogenated amorphous silicon (a-Si:H) films, which can be used as the passivation or absorption layer of solar cells, were prepared by inductively coupled plasma chemical vapor deposition (ICP-CVD) and their characteristics were studied. Deposition process of a-Si:H films was performed by varying the parameters, gas ratio (H2/SiH4), radio frequency (RF) power and substrate temperature, while a working pressure was fixed at 70 m Torr. Their characteristics were studied by measuring thickness, optical bandgap (eV), photosensitivity, bond structure and surface roughness. When the RF power and substrate temperature were 300 watt and 200 degrees C, respectively, optical bandgap and photosensitivity, similar to the intrinsic a-Si:H film, were obtained. The Si-H stretching mode at 2000 cm(-1), which means a good quality of films, was found at all conditions. Although the RF power increased up to 400 watt, average of surface roughness got better, compared to a-Si:H films deposited by the conventional PECVD method. These results show the potential for developing the solar cells using ICP-CVD, which have the relatively less damage of plasma.  相似文献   

9.
Runaway reactions arising from the decomposition of thermally unstable materials are a concern in industry due to the potentially devastating effects that they yield. Studies into the occurrence of thermal runaway incidents have shown the most likely cause to be a result of an inadequate investigation of the process prior to its operation on a large-scale. The chlorination of ortho-nitrated carboxylic acids is an industrially important reaction in the fine and agrochemical industries. The products of these reactions, ortho-nitrated acid chlorides, have been involved in runaway incidents that have resulted in violent explosions; hence, their thermal stability must be studied. Previous studies [S.D. Lever, M. Papadaki, Study of condition-dependent decomposition reactions: the thermal behaviour and decomposition of 2-nitrobenzoyl chloride, Part I, J. Hazard. Mater. 115 (2004) 91-100] showed that the decomposition of the parent molecule, 2-nitrobenzoyl chloride, is highly condition-dependent with the sample heating rate and temperature of decomposition playing a preponderant role in the course of the decomposition. Here, we present the results of studies of the decomposition of 2-nitrobenzoyl chloride, when the sample is subjected to various heating treatments, temperatures and in the presence of iron. As the temperature of decomposition was increased from 150 to 162 degrees C, the heat of decomposition was reduced from -215 to -90 kJ/mol. As the heat up rate applied in bringing the sample to the decomposition temperature increased, the heat of decomposition also increased. An increase in the heat up rate from 2 to 7.5 degrees C/min resulted in an increase in the heat of decomposition from -90 to -215 kJ/mol. The presence of iron and silver was observed to lower the heat of decomposition from -185 to -160 and -110 kJ/mol, respectively. Under most conditions investigated, the temperature at which gas flow was initiated was 147-150 degrees C. The presence of iron reduced this temperature to 140 degrees C. Decomposition was observed to take place over two stages, where the sample was heated directly from 40 degrees C at the required heat up rate. Where the sample was heated in stages and where calibrations had been carried out preceding decomposition, the decomposition took place in one stage alone.  相似文献   

10.
Niobium coatings were prepared on graphite by low pressure chemical vapor deposition using niobium chloride and hydrogen as the reactant gases. The effects of deposition temperature on the morphology, phase, and deposition rate of niobium coatings were studied. The as-deposited niobium coatings were characterized by scanning electron microscopy and X-ray diffraction. The results indicate that the niobium coatings exhibit a granular hillock structure at 850-900 °C while a laminar structure at 950-1100 °C. The deposition is dominated by surface chemical kinetics with an apparent activation energy of 93.2 kJ/mol at 850-950 °C, while it is dominated by mass transport with an apparent activation energy of 7.9 kJ/mol at 950-1050 °C. At temperatures below 1100 °C, the deposited coatings mainly contain niobium. At temperatures above 1100 °C, the deposited coatings mainly contain niobium carbides. Considering the deposition kinetics and interfacial reactions, the deposition temperature should be controlled below 950 °C.  相似文献   

11.
Ferroelectric lead lanthanum zirconate titanate (PLZT) films are deposited on R-plane sapphire using RF triode magnetron sputtering. Perovskite PLZT films with the desired composition (9/65/35) are obtained using compensated deposition techniques around 500 degrees C and postdeposition annealing at 650 degrees C. The deposited films exhibit good optical and electrooptical properties. The room temperature dielectric constant of the films was 1800 at 10 kHz. The refractive index of the films was in the range of 2.2-2.5. The films showed a quadratic electrooptic effect with R=0.6 x10(-16) m(2)/V(2). The development of PLZT on silicon-on-sapphire smart spatial light modulators using these films is also explored.  相似文献   

12.
We report results from an investigation into the nature and extent of carbon incorporation into aluminum oxide thin films deposited from the pyrolysis of dimethylaluminum isopropoxide via high-vacuum chemical vapor deposition. The chemical nature and distribution of carbon in films deposited in the 417-659 °C temperature range were investigated through X-ray photoelectron spectroscopy and Auger electron spectroscopy. Carbon composition increased with increasing deposition temperature, up to approximately 8 at.% at 659 °C. Carbon in films deposited at 477 °C was bonded only to oxygen or carbon, but films deposited above 538 °C also contained metal carbide-like bonding. Carbon content in films deposited on hydrogen-terminated Si (100) substrates increased toward the film-substrate interface, but no silicon-carbon bonding was observed.  相似文献   

13.
Pb(0.3)Sr(0.7)TiO(3)(PST) thin films were deposited on Pt coated Si(100) substrates by sol-gel techniques using different sol-concentrations. The structural and dielectric characteristics of lead strontium titanate (PST) thin films as a function of the sol concentration were investigated. PST thin films reveal a columnar texture through the thickness when the sol-concentration is lower than 0.30 M. PST thin films derived from 0.35 M sol show better dielectric characteristics with the dielectric constant, dielectric loss, tunability, and field of motion (FOM) (tunability/ dissipation) of 200, 0.01, 47% and 47, respectively. The temperature dependence of the dielectric constant, dielectric loss and tunability of PST thin films were investigated in the temperature range of -140 to 120 degrees C exhibiting a dielectric peak of about -45 degrees C.  相似文献   

14.
Lee CC  Chen HC  Jaing CC 《Applied optics》2006,45(13):3091-3096
Titanium oxide films were prepared by ion-beam-assisted deposition on glass substrates at various substrate temperatures. The effect of the temperature of thermal annealing from 100 degrees C to 300 degrees C on the optical properties and residual stress was investigated. The influence on the stoichiometry and residual stress of titanium oxides deposited at different substrate temperature was discussed. The residual-stress was minimum and the extinction coefficient was maximum at an annealing temperature of 200 degrees C with a substrate temperature of 150 degrees C. However, when the substrate temperature was increased to 200 degrees C and 250 degrees C, the residual stress was minimum and the extinction coefficient was maximum at an annealing temperature of 250 degrees C. The spectra of x-ray photoelectron spectroscopy reveal that the films lost oxygen and slowly generated lower suboxides at the annealing temperature at which the residual stress was minimum and the extinction coefficient was maximum. As the annealing temperature increased above the temperature at minimum stress, the lower suboxides began to capture oxygen and form stable oxides. TiO2 films deposited at substrate temperatures of 200 degrees C and 250 degrees C were more stable than films deposited at 150 degrees C.  相似文献   

15.
The structural and dielectric properties of sol-gel derived barium-strontium-titanate (Ba(0.4)Sr(0.6)TiO(3 )) thin films have been investigated. The as-fired films are found to be amorphous, and films crystallize to a cubic phase after a post deposition annealing at 700 degrees C for one hour in air. The variation of dielectric constant with temperature and field was investigated as a function of film thickness. These films display a nonlinear dielectric response that can be described in terms of a power series expansion of the free energy in polarization as in Landau-Ginzburg-Devonshire approach. The measured room temperature dielectric constant (epsilon') of the film was about 320. The dielectric constant did not show any significant frequency dependence up to 100 kHz. The temperature dependence of dielectric constant exhibited a diffused ferroelectric to paraelectric phase transition at -60 degrees C. The room temperature dielectric constant and magnitude of the dielectric peak at the Curie point was dependent on the thickness of the film. The obtained dielectric data on sol-gel barium strontium titanate thin films on platinized substrates were analyzed in the light of a barrier layer model.  相似文献   

16.
PbZr(x)Ti(1-x)O3 (PZT) thin films were deposited on 3-dimensional (3D) nano-scale trench structures for use in giga-bit density ferroelectric random access memories. PZT thin films were deposited by liquid delivery metalorganic chemical vapor deposition using Pb(thd)2, Zr(MMP)4, and Ti(MMP)4 precursors dissolved in ethyl cyclohexane. Iridium thin films were deposited by atomic layer deposition, and they exhibited excellent properties for capacitor electrodes even at a thickness of 20 nm. The trench capacitor was composed of three layers, viz. Ir/PZT/lr (20/60/20 nm), and had a diameter of 250 nm and a height of 400 nm. Almost 100% step coverage was obtained at a deposition temperature of 530 degrees C. The PZT thin film capacitors with a thickness of 60 nm on a planar structure exhibited a remnant polarization (Pr) of 28 microC/cm2, but the Pr value of the 3D PZT capacitors decreased slightly with decreasing 3D trench pattern size. The transmission electron microscope analysis indicated that the PZT thin films had compositional uniformity in the 3D trench region. Both columnar and granular grains were formed on the sidewalls of the trench capacitors, and their relative proportion exhibited strong size dependence. The trench capacitors with more columnar PZT grains showed good switching behavior under an external bias of 2.1 V and had a remnant polarization of 19-24 microC/cm2.  相似文献   

17.
This study aims to synthesize lead-free ferroelectric material, (Bi(1/2)Na(1/2))TiO3 using the Liquid Sprayed Mist Chemical Vapor Deposition (LSMCVD) technique. The mist of precursor solution was vaporized and deposited on two different substrates of Si(100) and (111)Pt/TiO2/SiO2/Si(100) in an oxygen atmosphere. The deposition temperature and time were varied in the range of 400-600 degrees C and 30-90 min. (Bi(1/2)Na(1/2))TiO3 thin film had preferred orientations of (110). The thickness of the thin film deposited was 35-162 nm. The remnant polarization (2Pr) and the dielectric constant were 4.6-16.8 microC/cm2, 325-350, respectively.  相似文献   

18.
Transmission electronic microscopy is used to study the structure, morphology and orientation of thin TiO2 films prepared by reactive magnetron sputtering on glass slides at different substrate temperatures (100 to 400 °C). The TiO2 films are used to purify a dye in waste water. The microstructure and photocatalytic reactivity of TiO2 films have been shown to be functions of deposition temperature. In the temperature range examined, all film samples have a porous nanostructure and the dimension of particles grown with increasing deposition temperature. Films are amorphous at temperatures of 100 °C and only anatase phase forms at 200 °C and above. Films deposited between 200 to 300 °C show a preferred orientation, while films at 400 °C change into complete random orientation. Deposition at 250 °C yields high efficiency in photocatalytic degradation owing to the high degree of preferred orientation and nanocrystalline/nanoporous anatase phase. © 1998 Kluwer Academic Publishers  相似文献   

19.
Krusic PJ  Roe DC 《Analytical chemistry》2004,76(13):3800-3803
The kinetics of the thermal decomposition of ammonium perfluorooctanoate (APFO) has been studied by high-temperature gas-phase nuclear magnetic resonance spectroscopy over the temperature range 196-234 degrees C. We find that APFO cleanly decomposes by first-order kinetics to give the hydrofluorocarbon 1-H-perfluoroheptane and is completely decomposed (>99%) in a matter of minutes at the upper limit of this temperature range. Based on the temperature dependence of the measured rate constants, we find that the enthalpy and entropy of activation are DeltaH++ = 150 +/- 11 kJ mol(-1) and DeltaS++ = 3 +/- 23 J mol(-)(1) deg(-1). These activation parameters may be used to calculate the rate of APFO decomposition at the elevated temperatures (350-400 degrees C) at which fluoropolymers are processed; for example, at 350 degrees C the half-life for APFO is estimated to be less than 0.2 s. Our studies provide the fundamental parameters involved in the decomposition of the ammonium salt of perfluorooctanoic acid and indicate the utility of gas-phase NMR for thermolysis studies of a variety of materials that release compounds that are volatile at the temperature of decomposition and that contain an NMR-active nucleus.  相似文献   

20.
CdS films of over 1-μm thickness were deposited onto glass substrates by chemical bath deposition (CBD). Deposition temperature and time were varied from 40 °C to 60 °C and from 30 min to 4 h, respectively. The highest deposition rate, 6.39 nm/min, was obtained with samples deposited for 90 min at 60 °C. The films deposited at 60 °C for 4 h were found to have the best adhesion and without defects. The optical properties, in particular the optical band gap, depended on film thickness, the deposition and annealing temperatures. Annealing in air resulted in a shift of the absorption edge towards higher wavelengths, i.e., a decrease in the gap value from 2.45 eV to 2.38 eV. The optical band edges of the films were not constant but depended on the annealing temperature. The refractive index, calculated by applying the envelope method on the transmission of the films in wavelengths from 550 nm to 850 nm, was in the range 1.95-2.26. The resistivity determined from dark conductivity measurement, as a function of the annealing temperature, was found to be in the order of 105 Ω cm for samples annealed in air at 250 °C, 3 h, and the activation energy was about 0.22 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号