首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Transfer printing of nanomaterials onto target substrates has been widely used in the fabrication of nanodevices, but it remains a challenge to fully avoid contamination introduced in the transfer process. Here we report a metal-film- assisted method to realize an ultra-clean transfer of single-walled carbon nanotubes (SWCNTs) mediated by poly(methyl methacrylate) (PMMA). The amount of PMMA residue can be greatly reduced due to its strong physical adhesion to the metal film, leading to ultra-clean surfaces of both the SWCNTs and the substrates. This metal-film-assisted transfer method is efficient, nondestructive, and scalable. It is also suitable for the transfer of graphene and other nanostructures. Furthermore, the relatively low temperature employed allows this technique to be compatible with nanomaterial-based flexible electronics.  相似文献   

2.
The electronic transport properties of ordered networks using carbon nanotubes as building blocks (ON-CNTs) are investigated within the framework of a multiterminal Landauer-Buttiker formalism using an s,p(x),p(y),p(z) parameterization of the tight-binding Hamiltonian for carbon. The networks exhibit electron pathway selectiveness, which is shown to depend on the atomic structure of the network nodes imposed by the specific architecture of the network and the distribution of its defects (non-hexagonal rings). This work represents the first understandings towards leading current through well-defined trajectories along an organic nanocircuit.  相似文献   

3.
In this paper we present a simple approach of nanodispersing single-walled carbon nanotubes (SWCNTs) in a non-polar 1,2-dichloroethane (DCE) solvent. After filtration with isopropanol and acetone, the purified SWCNTs were immersed in DCE, followed by sonication for about 15 hours. The samples were further centrifuged at 17,000 revolutions per minute for about 3 hours. Atomic force microscopy (AFM) demonstrated that the spin-coated nanotubes were mostly individual nanotubes with an average diameter of 1.6 nm and a length of about 250 nm. We also found that the presence of water, and the dry process during DCE treatment, prevented nanotubes from being nanodispersed.  相似文献   

4.
Otsuka  Keigo  Inoue  Taiki  Shimomura  Yuki  Chiashi  Shohei  Maruyama  Shigeo 《Nano Research》2017,10(9):3248-3260
Nano Research - Although aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) are promising for use in next-generation electronics owing to their ultrathin bodies and ideal...  相似文献   

5.
In vitro photoacoustic therapy using modified single-walled carbon nanotubes (SWNTs) as "bomb" agents is a newly reported approach for cancer. Herein, a mitochondria-targeting photoacoustic modality using unmodified SWNTs and its in vitro and in vivo antitumor effect are reported. Unmodified SWNTs can be taken up into cancer cells due to a higher mitochondrial transmembrane potential in cancerous cells than normal cells. Under the irradiation of a 1064 nm pulse laser, 79.4% of cancer cells with intracellular SWNTs die within 20 s, while 82.3% of normal cells without SWNTs remain alive. This modality kills cancer cells mainly by triggering cell apoptosis that initiates from mitochondrial damage, through the depolarization of mitochondria and the subsequent release of cytochrome c after photoacoustic therapy. It is very effective in suppressing tumor growth by selectively destroying tumor tissue without causing epidermis injury. Taken together, these discoveries provide a new method using mitochondria-localized SWNTs as photoacoustic transducers for cancer treatment.  相似文献   

6.
Chen YR  Weng CI  Sun SJ 《Nanotechnology》2008,19(5):055206
Molecular dynamics simulations and quantum transport theory are employed to study the temperature-dependent electrical properties of individual (12,0) zigzag and (5,5) armchair carbon nanotubes deposited on silicon substrates. The results demonstrate that the magnitude of the leakage current depends on the length of the nanotube. Furthermore, the leakage current is generated periodically along the length of the nanotube. Finally, the results indicate that given an appropriate value of the applied bias voltage, the induced current varies linearly with the temperature over specific temperature ranges. As a result, the temperature can be inversely derived from the measured current signal. Overall, the results show that the (12,0) zigzag and (5,5) armchair carbon nanotubes are suitable for temperature sensing applications over temperature ranges of 200-420?K and 300-440?K, respectively.  相似文献   

7.
A temperature-related higher-order gradient continuum theory is proposed for predicting the mechanical properties of single-walled carbon nanotubes (SWCNTs) at various temperatures. It is found that the axial elastic moduli of zigzag (21, 0), armchair (12, 12) and chiral (15, 9) SWCNTs with similar radii approach 0.7 TPa when T = 0 K, but decline slightly on different slopes. These results indicate that the temperature effect influences the axial Young moduli of zigzag SWCNTs less than those of the other types. Moreover, the parameters λ1 and λ2 corresponding to the uniform longitudinal and circumferential stretches at different temperatures are also examined, and the results show that with an increasing temperature, all SWCNTs are stretched in the longitudinal direction, while in the circumferential direction, only the zigzag SWCNTs are stretched, whereas the others are compressed.  相似文献   

8.
We studied the exciton energy transfer in pairs of semiconducting nanotubes using high-resolution optical microscopy and spectroscopy on the nanoscale. Photoluminescence from large band gap nanotubes within bundles is observed with spatially varying intensities due to distance-dependent internanotube transfer. The range of efficient energy transfer is found to be limited to a few nanometers because of competing fast nonradiative relaxation responsible for low photoluminescence quantum yield.  相似文献   

9.
This paper deals with the fabrication of carbon nanotube field effect transistors (CNTFETs) for gas sensing applications. Such devices exploit the extremely sensitive change of the Schottky barrier heights between carbon nanotubes (CNTs) and drain/source metal electrodes: the gas adsorption creates an interfacial dipole that modifies the metal work function and so the band bending and the height of the Schottky barrier at the contacts. Our aim is to achieve the fingerprinting of a specific gas using a CNTFET based sensor array. This fingerprinting concept is based on the fact that the change of the metal electrode work function strictly depends on the metal/gas interaction. Consequently the CNTFET transfer characteristics will change specifically as a function of this interaction. To demonstrate this new concept, we have fabricated arrays of CNTFETs with different metal contacts: Au, Pd, Ti and Pt. Using these transistors, we have shown that a particular gas, in our case DiMethyl-Methyl-Phosphonate (DMMP, a sarin simulant), interacts specifically with each metal: 1 ppm of DMMP (15 min of exposure) reduces the transistor ON current by about 20% for Pt contacted CNTFETs and by nearly one order of magnitude for Pd contacted CNTFETs. We believe that this new approach can be applied for highly selective sensing of various gases, using ultra-compact, room temperature and very low power devices.  相似文献   

10.
Pure metallic single-walled carbon nanotubes (m-SWCNTs) are very desirable for many electrode and interconnecting applications. However, the lack of reliable processing techniques to sort m-SWCNTs from the as-synthesized SWCNT samples is an obstacle to these applications. The effects of carbene-based covalent functionalization on the electrical properties of an isolated m-SWCNT, a semiconducting (s)-SWCNT, and a mixture network of both m- and s-SWCNTs are reported. For the first time, a semiconducting-to-metallic SWCNT transition upon dichlorocarbene functionalization is observed. Interestingly, the transition is reversible upon thermal annealing under ambient conditions. The electrical properties of m-SWCNTs remain largely unaffected whereas the on-state conductivity of s-SWCNTs is greatly reduced by this process, in agreement with the relevant theoretical predictions. These findings could pave the way for fabricating large-scale SWCNT-based interconnects and electrodes in full-carbon integrated circuits.  相似文献   

11.
We present optical absorption spectra of single-walled carbon nanotube (SWNT) films obtained after 1-year-long film storage in air and upon heating up to 250°C. The results of the investigation show that long-term storage of the SWNTs in normal atmosphere leads to a substantial drop in intensity of optical absorption caused by electronic excitation, which recovers after film heating. The mechanism of changes in the electronic properties of the SWNTs under the influence of environment is discussed.  相似文献   

12.
Cutting single-walled carbon nanotubes   总被引:3,自引:0,他引:3  
A two-step process is utilized for cutting single-walled carbon nanotubes (SWNTs). The first step requires the breakage of carbon-carbon bonds in the lattice while the second step is aimed at etching at these damage sites to create short, cut nanotubes. To achieve monodisperse lengths from any cutting strategy requires control of both steps. Room-temperature piranha and ammonium persulfate solutions have shown the ability to exploit the damage sites and etch SWNTs in a controlled manner. Despite the aggressive nature of these oxidizing solutions, the etch rate for SWNTs is relatively slow and almost no new sidewall damage is introduced. Carbon-carbon bond breakage can be introduced through fluorination to ~C(2)F, and subsequent etching using piranha solutions has been shown to be very effective in cutting nanotubes. The final average length of the nanotubes is approximately?100?nm with carbon yields as high as 70-80%.  相似文献   

13.
We have developed a biosensor capable of detecting carcinoembryonic antigen (CEA) markers using single-walled carbon nanotube field effect transistors (SWNT-FETs). These SWNT-FETs were fabricated using nanotubes produced by a patterned catalyst growth technique, where the top contact electrodes were generated using conventional photolithography. For biosensor applications, SU-8 negative photoresist patterns were used as an insulation layer. CEA antibodies were employed as recognition elements to specific tumor markers, and were successfully immobilized on the sides of a single-walled carbon nanotube using CDI-Tween 20 linking molecules. The binding of tumor markers to these antibody-functionalized SWNT-FETs was then monitored continuously during exposure to dilute CEA solutions. The observed sharp decrease in conductance demonstrates the possibility of realizing highly sensitive, label-free SWNT-FET-based tumor sensors.  相似文献   

14.
In this work the internal channels of the single-walled carbon nanotubes (SWCNTs) were filled with cadmium chloride, cadmium bromide, and cadmium iodide by a capillary method using melts of these salts. The influence of incorporated chemical compounds on the electronic properties of the carbon nanotubes was investigated by optical absorption spectroscopy, Raman spectroscopy, near edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. It was found that there is the chemical bonding between carbon atoms of nanotube walls and metal atoms of encapsulated CdX2 nanocrystals. The obtained data testify acceptor doping effect of cadmium halogenides incorporated into the SWCNT channels, which is accompanied by the charge transfer from nanotube walls to introduced substances.  相似文献   

15.
用气相流动催化热解法合成单壁碳纳米管   总被引:4,自引:0,他引:4  
以正硅酸乙酯(TEOS)为前驱体,二茂铁为催化剂前驱体,利用气相流动催化热解法在850~1160℃连续合成了单壁碳纳米管(SWNTs).在此过程中,以由TEOS分解得到的二氧化硅颗粒和二茂铁分解得到的铁颗粒在气流中直接形成的复合粒于作为催化剂,二氧化硅作为铁颗粒的载体.电于显微镜和激光拉曼光谱的观测和分析表明,在所得到的产物中SWNTs的含量约为10%,其直径为1~2nm。  相似文献   

16.
We report an improved, elegant method for the covalent formylation of single-wall carbon nanotubes (SWNTs) via formyl transfer from N-formylpiperidine, which could potentially open the gateway for more versatile chemical modification of carbon nanotube (CNT) walls than is possible via other reported functionalisation methods. The formylation reaction does not inflict damage upon the pristine CNT structure, unlike the currently commonly used carboxylation route, and involves much fewer steps, and takes considerably less time, than most other reported routes. The modified SWNTs have been characterised by Raman spectroscopy, ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy and "covalent tagging" with derivatising groups followed by thermogravimetric analysis-mass spectroscopy (TGA-MS). UV-vis-NIR spectroscopy shows that there is only limited disruption of the intrinsic electronic structure of the SWNTs. This is confirmed from estimates of the extent of functionalisation from TGA-MS, which suggest that it may be as low as 2 atomic per cent.  相似文献   

17.
The discovery of carbon nanotubes (CNTs) created much excitement and stimulated extensive research into the properties of nanometer-scale cylindrical networks. From then on, various methods for the synthesis and characterization of aligned CNTs-both single-walled (SWCNTs) and multi-walled (MWCNTs) by different methods have been hotly pursued. Unfortunately, most methods currently in use produce raw multi component solid products, only a small fraction of which contains carbon nanotubes. The balance of the material is composed of residual catalyst particles (some of which are encased in concentric graphitic shells), fullerenes, other graphitic materials and amorphous carbon. These impurities cause a serious impediment for their detailed characterization and applications. If the carbon nanotube is ever to fulfill its promise as an engineering material, large, high quality aliquots will be required. A number of purification methods involving elimination processes such as physical separation, gas phase and liquid phase oxidation in combination with chemical treatments have been developed for nanotube materials. Though the quantitative determination of purity remains controversial, reported yields are best regarded with an appropriate level of skepticism on the method of assay. In this article, a review is given on the past and recent advances in purification of SWCNTs.  相似文献   

18.
19.
Current rectification property of as-grown single-walled carbon nanotubes (SWNTs) is investigated. The SWNTs are grown by chemical vapor deposition (CVD) process. The process allowed to grow long strands of SWNT bundles, which are then used to fabricate multiple arrays of switching devices with the channel length of 3, 5, 7 and 10 microm on a 15 mm x 15 mm SiO2 on Si substrate. Regardless of the channel length, a majority of the fabricated devices show current rectification characteristics, with high throughput of current (I) in the forward bias (V) giving the forward and reverse current ratio (Ifor/Irev) of approximately 10(6). Atomic force microscopic (AFM) analysis of the device structure and surface topology of SWNT suggest the observed rectification of current to possibly result from (a) cross-tube junctions, (b) a mixture of metallic and semiconducting tubes in the SWNT bundles, and/or (c) chirality change along a single tube. The exact mechanism underlying the observed rectification could not be conclusively established. However, the analyses of the experimental results strongly suggest the observed rectification to result from Schottky-type diode properties of SWNTs with mixed chirality along the tube.  相似文献   

20.
Lu J  Yuan D  Liu J  Leng W  Kopley TE 《Nano letters》2008,8(10):3325-3329
We report a simple fabrication method of creating a three-dimensional single-walled carbon nanotube (CNT) architecture in which suspended CNTs are aligned parallel to each other along the conventionally unused third dimension at lithographically defined locations. Combining top-down lithography with the bottom-up block copolymer self-assembly technique and utilizing the excellent film forming capability of polymeric materials, highly uniform catalyst nanoparticles with an average size of 2.0 nm have been deposited on sidewalls for generating CNTs with 1 nm diameter. This three-dimensional platform is useful for fundamental studies as well as technological exploration. The fabrication method described herein is applicable for the synthesis of other very small 1D nanomaterials using the catalytic vapor deposition technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号